Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Voyager 2 stał się drugim w historii pojazdem wysłanym przez człowieka, który opuścił heliosferę. Na podstawie analizy danych przesłanych przez różne instrumenty naukowcy z NASA doszli do wniosku, że Voyager 2 przekroczył zewnętrzną krawędź heliosfery – heliopauzę – 5 listopada. Heliopauza to miejsce, w którym gorący wiatr słoneczny napotyka na zimny gęsty ośrodek międzygwiezdny. Bliźniaczy Voyager 1 przeciął heliopauzę w 2012 roku, warto jednak przypomnieć, że na pokładzie Voyagera 2 znajduje się instrument, który pozwoli naukowcom lepiej przyjrzeć się heliopauzie.

Obecnie Voyager 2 znajduje się w odległości 18 miliardów kilometrów do Ziemi. Wysyłane przez niego sygnały potrzebują 16,5 godziny, by dotrzeć do centrum kontroli NASA.

Najbardziej przekonujący dowód na to, że Voyager 2 opuścił heliosferę pochodzi z instrumentu Plasma Science Experiment (PLS). Voyager 1 nie przysłał takich danych, gdyż jego PLS przestał działać w 1980 roku.

Dotychczas przestrzeń wokół Voyagera 2 była wypełniona głównie plazmą pochodzącą ze Słońca, wiatrem słonecznym. To właśnie on tworzy bąbel, heliosferę. PLS wykrywa prędkość, gęstość, temperaturę, ciśnienie i przepływ wiatru słonecznego. Dnia 5 października instrument zarejestrował gwałtowny spadek prędkości wiatru słonecznego. Od tamtej pory nie wykrywa jego przepływu.

Jednocześnie z trzech innych instrumentów, wykrywających promieniowanie kosmiczne, niskoenergetyczne cząstki oraz pole magnetyczne, nadeszły informacje, które są zgodne z wnioskiem o przecięciu helipauzy.

Mimo, że oba Voyagery znajdują się poza heliopauzą, to nie opuściły jeszcze Układu Słonecznego. Jego granica znajduje się bowiem poza Obłokiem Oorta. To hipotetyczny zbiór drobnych okruchów, pyłu i planetoid obiegających Słońce. Uważa się, że zewnętrzne granice Obłoku Oorta wyznaczają granice dominacji grawitacyjnej Układu Słonecznego. Obłok Oorta znajduje się w odległości od 1000 do 100 000 jednostek astronomicznych od Słońca. Voyager 2 dotrze do Obłoku Oorta za około 300 lat, a opuści go prawdopodobnie za 30 000 lat.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
7 godzin temu, KopalniaWiedzy.pl napisał:

Voyager 2 stał się drugim w historii pojazdem wysłanym przez człowieka, który opuścił heliosferę. Na podstawie analizy danych przesłanych przez różne instrumenty naukowcy z NASA doszli do wniosku, że Voyager 2 przekroczył zewnętrzną krawędź heliosfery – heliopauzę – 5 października.

Pomyślałem sobie - dziwne opóźnienie w przekazywaniu danych. Poszukałem źródła i:

Cytat

Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5.

NASA

Czyż można się dziwić, że Redakcja unika wstawiania precyzyjnych odnośników do źródeł?

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
13 godzin temu, Ksen napisał:

Poszukałem źródła i:

A wystarczyło kliknąć i powiększyć obrazek :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Sihao Cheng z Institute for Advanced Study oraz Jiaxuan Li i Eritas Yang z Princeton University informują o odkryciu na krawędzi Układu Słonecznego niezwykłego obiektu transneptunowego 2017 OF201. Niewykluczone, że jest on na tyle duży, by zaliczyć go do planet karłowatych, zatem do tej klasy obiektów, co Pluton. Jest to jeden z najbardziej odległych widocznych obiektów Układu Słonecznego.
      Istnienie nieznanego dotychczas ciała niebieskiego zostało oficjalnie ogłoszone przez Minor Planet Center Międzynarodowej Unii Astronomicznej, a szczegóły odkrycia zostały opublikowane w artykule udostępnionym w arXiv.
      Obiekty transneptunowe (TNO) to planetoidy znajdując się zwykle poza orbitą Neptuna. Największe z nich to planety karłowate, zaliczane do plutoidów. Planety karłowate to obiekty obiegające Słońce o na tyle dużej masie, że mają kształt niemal kulisty, które nie oczyściły swojej orbity z innych obiektów i nie są satelitami innych obiektów.
      Obiekt 2017 OF201 ma niezwykłą orbitę. Jej aphelium – najdalszy punkt od Słońca – znajduje się w odległości ponad 1600 razy większej, niż odległość Ziemi od Słońca. Tymczasem peryhelium – punkt najbliższy Słońcu – jest w odległości 44,5 jednostek astronomicznych, czyli podobnej do orbity Plutona, mówi Cheng. Tak niezwykle wydłużona orbita powoduje, że 2017 OF201 obiega Słońce w ciągu około 25 000 lat. To sugeruje, że w przeszłości doświadczał złożonych interakcji grawitacyjnych.
      Musiał mieć bliskie spotkania z wielkimi planetami, które wyrzuciły go na tak odległą orbitę, stwierdza Yang. Musiał to być wielostopniowy proces. Niewykluczone, że obiekt ten został najpierw wyrzucony do Obłoku Oorta, najbardziej odległego obszaru Układu Słonecznego, który jest domem wielu komet, a następnie przysłany tutaj z powrotem, dodaje Cheng.
      Naukowcy zauważają, że orbity wielu obiektów transneptunowych wydają się zbiegać w tym samym kierunku, a 2017 OF201 wymyka się tej regule. Takie zbieganie się orbit TNO może być pośrednim dowodem na istnienie w Układzie Słonecznym nieznanej planety, nazwanej roboczo Planetą X lub Dziewiątą Planetą.
      Cheng i jego koledzy szacują, że średnica 2017 OF201 może wynosić 700 kilometrów, co czyniłoby go drugim największym obiektem o tak ekstremalnej orbicie. To wciąż znacznie mniej niż średnica Plutona, która wynosi 2377 kilometrów.
      Żeby jednak dowiedzieć się czegoś więcej o potencjalnej nowej planecie karłowatej, potrzebne będą kolejne badania. 2017 OF201 tylko przez 1% swojej orbity wokół Słońca jest na tyle blisko nas, że możemy go wykryć. Jego obecność sugeruje jednak, że mogą istnieć setki obiektów o podobnych orbitach i rozmiarach, jednak są one obecnie zbyt daleko, byśmy mogli je zauważyć, wyjaśnia Cheng.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie nazywają Jowisza „architektem” Układu Słonecznego. Jego potężne pole grawitacyjne odegrało ważną rolę w ukształtowaniu orbit pozostałych planet, wpłynęło na kształt ich dysków protoplanetarnych. Teraz profesorowie Konstantin Batygin z California Institute of Technology i Fred C. Adam z University of Michigan poinformowali na łamach Nature Astronomy, że w przeszłości Jowisz był znacznie większy i wywierał znacznie silniejsze oddziaływanie grawitacyjne.
      Naszym celem jest zrozumienie, skąd się wzięliśmy. Żeby to wiedzieć, musimy poznać wczesne fazy formowania się planet. To prowadzi nas do zrozumienia, a jaki sposób swój obecny kształt nabył nie tylko Jowisz, ale cały Układ Słoneczny, stwierdza Batygin.
      Naukowcy przyjrzeli się niewielkim księżycom Jowisza, Amaltei i Tebe. Orbity obu są nieco nachylone względem Jowisza, naukowcy wykorzystali je do obliczenia pierwotnej wielkości Jowisza. Z obliczeń tych wynika, że 3,8 miliona lat po tym, jak uformowały się pierwsze planety skaliste Układu Słonecznego, Jowisz miał dwukrotnie, a może nawet dwuipółkrotnie, większą średnicę niż obecnie. Jego pole magnetyczne było zaś 50-krotnie silniejsze niż obecnie. Nasze obliczenia są całkowicie zgodne z teorią o formowaniu się olbrzymich planet i pozwalają na wgląd w system Jowisza pod koniec istnienia mgławicy przedsłonecznej - czytamy na łamach Nature Astronomy.
      Ważnym aspektem badań jest oparcie się przez naukowców na danych, które nie są obarczone takim poziomem niepewności jak zwykle używane modele, w których przyjmuje się założenia odnośnie przejrzystości gazu, tempa akrecji czy masy jądra formującej się planety. Batygin i Adams wykorzystali dynamikę orbitalną księżyców Jowisza oraz moment pędu samej planety, czyli wartości, które można bezpośrednio zmierzyć.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Inżynierowie misji Voyager wyłączyli niedawno CRS (Cosmic Ray Subsystem) na Voyagerze 1, a za dwa tygodnie wyłączą Low-Energy Charged Particle (LECP) na Voyagerze 2. Instrumenty, jak można domyślić się z ich nazw, odpowiadają za badanie promieniowania kosmicznego oraz niskoenergetycznych jonów. Po wyłączeniu wspomnianych urządzeń na każdej z sond będzą działały po 3 instrumenty naukowe. Odłączanie instrumentów ma na celu zaoszczędzenie energii i przedłużenie czasu działania sond – jedynych wysłanych przez człowieka obiektów, które opuściły Układ Słoneczny.
      Voyagery zasilane są przez radioizotopowe generatory termoelektryczne, generujące energię z rozpadu dwutlenku plutonu-238. Początkowo generatory wytwarzały energię o mocy około 475 W, jednak w miarę zużywania się paliwa tracą rocznie około 4,3 W. W przestrzeni kosmicznej przebywają już od 48 lat. Sposobem na poradzenie sobie ze zmniejszaniem mocy, jest wyłączanie kolejnych instrumentów. Jeśli byśmy nie wyłączali instrumentów, Voyagerom zostałoby prawdopodobnie kilka miesięcy pracy, mówi Suzanne Dodd.
      Na pokładzie każdej z sond znajduje się 10 identycznych instrumentów naukowych. Zadaniem części z nich było zabranie danych z gazowych olbrzymów Układu Słonecznego, zostały więc wyłączone zaraz po tym, jak sondy skończyły badania tych planet. Włączone zostały te instrumenty, które naukowcy uznali za potrzebne do zbadania heliosfery i przstrzeni międzygwiezdnej. Voyager 1 dotarł do krawędzi heliosfery w 2012 roku, Voyager 2 – w roku 2018.
      W październiku ubiegłego roku na Voyagerze 2 wyłączono instrument badający ilość plazmy i kierunek jej ruchu. W ostatnich latach instrument ten zebrał niedużą ilość danych, gdyż jest zorientowany w kierunku przepływu plazmy w ośrodku międzygwiezdnym. Voyager 1 przestał badać plazmę wiele lat temu, ze względu na spadającą wydajność urządzenia.
      Wyłączony właśnie CRS na Voyagerze 1 to zestaw trzech teleskopów badających m.in. protony z przestrzeni międzygwiezdnej i Słońca. Dane te pozwoliły określić, w którym miejscu i kiedy Voyager 1 opuścił heliosferę. LECP na Voyagerze 2, który ma zostać wkrótce wyłączony, bada różne jony, elektrony i promieniowanie kosmiczne zarówno z Układu Słonecznego, jak i spoza niego.
      Oba instrumenty wykorzystują obracające się platformy, mogą więc prowadzić badania w promieniu 360 stopni. Platformy wyposażono w silniki krokowe, które o obracały je co 192 sekundy. Na Ziemi platformy zostały przetestowane na 500 000 kroków. Tyle, ile potrzeba było, by misje doleciały do Saturna. Okazały się jednak znacznie bardziej wytrzymałe. Mają za sobą już ponad 8,5 miliona kroków.
      Voyagery miały zbadać zewnętrzne planety Układu Słonecznego i już dawno przekroczyły przewidywany czas działania. Każdy bit dodatkowych danych, które od tej pory udało się zebrać, to nie tylko wartościowa informacja dla heliofizyki, ale też świadectwo niezwykłych osiągnięć inżynieryjnych, stwierdza Patrick Koehn, odpowiedzialny za program naukowy Voyagerów.
      Inżynierowie NASA starają się, by instrumenty naukowe na sondach działały jak najdłużej, gdyż dostarczają unikatowych danych. W tak dalekich regionach kosmosu nie pracował jeszcze żaden instrument i przez najbliższe dziesięciolecia żaden nowy nie zostanie tam wysłany.
      Wyłączenie wspomnianych urządzeń oznacza, że sondy będą miały wystarczająco dużo energii, by działać przez około rok, zanim zajdzie konieczność wyłączenia następnych urządzeń. W tej chwili na Voyagerze 1 pracuje magnetometr i Plasma Wave Subsystem (PWS), odpowiedzialny za badanie gęstości elektronowej. Działa też LECP, który zostanie wyłączony w przyszłym roku. Na Voyagerze 2 działają zaś – nie licząc LECP, który wkrótce będzie wyłączony – magnetometr, PWS oraz CRS. W przyszłym roku inżynierowie wyłączą ten ostatni.
      Eksperci z NASA mają nadzieję, że dzięki tego typu działaniom jeszcze w latach 30. bieżącego wieku na każdym z Voyagerów będzie pracował jeszcze co najmniej 1 instrument naukowy. Czy tak się stanie, tego nie wiadomo. Trzeba pamiętać, że obie sondy od dziesięcioleci ulegają powolnej degradacji w surowym środowisku pozaziemskim.
      Obecnie Voyager 1 znajduje się w odległości ponad 25 miliardów kilometrów od Ziemi, a do Voyagera 2 dzieli nas 21 miliardów km. Sygnał radiowy do pierwszego z nich biegnie ponad 23 godziny, do drugiego – 19,5 godziny.
      W każdej minucie każdego dnia Voyagery badają zupełnie nieznane nam regiony, dodaje Linda Spilker z Jet Propulsion Laboratory. Oba pojazdy można na bieżąco śledzić na stronach NASA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Najbliższe Ziemi czarne dziury znajdują się w gromadzie Hiady, informuje międzynarodowy zespół naukowy na łamach Monthly Notices of the Royal Astronomical Society. Hiady (Dżdżownice) to najbliższa Układowi Słonecznemu gromada otwarta. Najnowsze badania pokazują, że znajduje się tam co najmniej kilka czarnych dziur. Gromady otwarte to luźno powiązane grawitacją grupy setek do tysięcy zwykle młodych gwiazd. W Hiadach gwiazd jest około 300, a większości z nich nie widać gołym okiem.
      Dzięki obserwacjom prowadzonym przez należące do ESA obserwatorium kosmiczne Gaia znamy dokładne prędkości i pozycje gwiazd w Hiadach. Naukowcy z Włoch, Hiszpanii, Chin, Niemiec i Holandii przeprowadzili symulacje ruchu wszystkich gwiazd w Hiadach i porównali je z danymi z Gai. "Nasze symulacje odpowiadają rzeczywistej masie i rozmiarom Hiad tylko wówczas, gdy w centrum gromady znajdują się – lub znajdowały się niedawno – czarne dziury", mówi Stefano Torniamenti z Uniwersytetu w Padwie.
      Obserwowane właściwości Hiad najlepiej odpowiadają symulacjom, gdy przyjmiemy, że w gromadzie znajdują się 2-3 gwiazdowe czarne dziury. Symulacje, w których dziury zostały wyrzucone z gromady nie dawniej niż 150 milionów lat temu (Hiady mają ok. 600 milionów lat), także – choć nie tak dobrze – odpowiadają danym obserwacyjnym.
      Czarne dziury znajdujące się w Hiadach lub w pobliżu są zatem najbliższymi nam obiektami tego typu. Ich odległość od Układu Słonecznego wynosi około 45 parseków, czyli ok. 150 lat świetlnych. Dotychczas najbliższa nam znaną czarną dziurą była Gaia BH1 o odległości 480 parseków (1560 l.ś.) od Słońca.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astrofizyk Avi Loeb z Uniwersytetu Harvarda ma nadzieję, że zorganizowanej przez niego ekspedycji udało się zebrać szczątki pierwszego znanego meteorytu pochodzącego spoza Układu Słonecznego. Uczony wraz ze współpracownikami przez 10 dni przeczesywał za pomocą specjalnego magnetycznego urządzenia dno oceaniczne u wybrzeży Papui Nowej Gwinei. Udało się zebrać ponad 700 metalicznych sferuli, które będą badane zarówno w laboratorium Loeba, jak i w 2 niezależnych laboratoriach, które poprosił o pomoc. Miejsce poszukiwań zostało wybrane dzięki analizie danych z Departamentu Obrony oraz odczytów z dwóch pobliskich stacji sejsmicznych.
      Loeb sądzi, że wiele ze sferuli, drobnych kulek szklanych ze stopionego meteorytu, pochodzi spoza Układu Słonecznego. Jeśli analizy laboratoryjne wykażą, że ich skład jest różny od wszystkiego, co dotychczas znaleźliśmy, będzie do silna przesłanka na poparcie hipotezy uczonego. Jeśli ma rację, będziemy mieli do czynienia z trzecim – po asteroidzie Oumuamua i komecie Borisov – znanym nam gościem spoza Układu Słonecznego i pierwszym, którego szczątki opadły na Ziemię.
      Każdego roku na Ziemię opada ponad 5000 ton mikrometeorytów. Mamy więc olbrzymią liczbę sferuli z kosmosu, inne powstają w wyniku erupcji wulkanicznych oraz zanieczyszczeń emitowanych przez człowieka. Potrafimy odróżnić materiał pochodzący z Ziemi od materiału z przestrzeni kosmicznej. Możemy być też w stanie odróżnić ten z Układu Słonecznego od materiału spoza niego.
      Meteoryt IM1 (od Interstellar Meteor 1) eksplodował nad Pacyfikiem 8 stycznia 2014 roku. Loeb uważa, że przeszukał obszar, na który mogły spaść jego szczątki oraz nie wyklucza, że udało mu się je zebrać. Wielu astronomów powątpiewa jednak w jego słowa. Zwracają uwagę, że nie wiadomo, czy IM1 pochodził spoza Układu Słonecznego, a jeśli nawet tak, to czy jakiekolwiek jego szczątki dotarły do Ziemi. Profesor Steven Desch z Arizona State University zwraca uwagę, że zgodnie z jego wyliczeniami, a opierał się na danych z Departamentu Obrony, meteor wszedł w atmosferę z prędkością 45 km/s. Jeśli składał się z żelaza, to jeszcze w atmosferze odparowało 99,9999% jego masy. Znalezienie pozostałości po nim jest więc niezwykle mało prawdopodobne, tym bardziej, że rozproszyły się one na powierzchni wielu kilometrów kwadratowych.
      Loeb odpowiada, że wraz ze studentami opublikował artykuł, w którym – na podstawie obliczeń – wskazywali miejsce, gdzie powinny znajdować się tysiące sferuli. I rzeczywiście, znaleźliśmy je, mówi. Uczony dodaje, że dopiero analizy laboratoryjne pozwolą na rozstrzygnięcie sporu.
      Na razie spór trwa. Niektórzy przypominają, że dane z czujników Departamentu Obrony są niejednokrotnie niedokładne, gdyż wojsko nie udostępnia surowych odczytów z tajnych urządzeń. Przypominają, że niejednokrotnie pojawiały się twierdzenia o znalezieniu meteorytów spoza Układu Słonecznego i nigdy się one nie potwierdziły. Loeb odpowiada, że tym razem jest inaczej, gdyż US Space Command wykonało bezprecedensowy ruch i poinformowało NASA, że przeprowadzone obliczenia – mówiące o pochodzeniu meteorytu z przestrzeni międzygwiezdnej – są prawidłowe.
      Wyniki badań laboratoryjnych, które rozstrzygną spór, powinniśmy poznać w ciągu najbliższych tygodni.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...