Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Obłok Oorta' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. Przed dwoma laty astronomowie zauważyli niezwykły obiekt, międzygwiezdną kometę. 2I/Borisov to jedyna taka kometa i zaledwie drugi – po 1I/Oumuamua – znany nam przybysz spoza Układu Słonecznego. Jednak wizyty tego typu mogą być znacznie częstsze niż nam się wydaje. Amir Siraj i profesor Avi Loeb z Center for Astrophysics (CfA) Harvard & Smithsonian zaprezentowali właśnie badania, z których wynika, że w Obłoku Oorta znajduje się więcej obiektów pochodzących spoza Układu Słonecznego niż z Układu Słonecznego. Zanim odkryliśmy pierwszą międzygwiezdną kometę, nie mieliśmy pojęcia, jak dużo tego typu obiektów znajduje się w Układzie Słonecznym. Jednak teorie dotyczące formowania się planet przewidują, że powinno być tutaj więcej obiektów rodzimych niż przybyszów. Jednak z naszych obliczeń wynika, że gości może być znacznie więcej, mówi Siraj. Uczony przyznaje, że obliczenia, opierające się na badaniach 2I/Borisov, obarczone są dość sporym marginesem błędu, ale nawet jeśli weźmiemy to pod uwagę i tak Obłok Oorta powinien być w większości zbudowany z obiektów międzygwiezdnych. Powiedzmy, że przez jeden dzień obserwuję kilometrowy odcinek torów kolejowych. I zauważyłem, że w tym czasie przekroczył go jeden samochód. Mogę więc stwierdzić, że średnia liczba samochodów przejeżdżających przez tory kolejowe wynosi 1 pojazd na 1 kilometr na 1 dzień. Jeśli jednak mam podstawy, by przypuszczać, że moje obserwacje nie były pełne – gdy na przykład zauważę dodatkowy przejazd kolejowy, na który nie zwróciłem wcześniej uwagi – mogę pójść dalej i wykorzystać metody statystyczne do oceny rzeczywistej liczby samochodów, które przejechały przez tory na obserwowanym przeze mnie odcinku, wyjaśnia uczony. Obłok Oorta to hipotetyczna olbrzymia sfera otaczająca Układ Słoneczny. Jego wewnętrzna krawędź ma znajdować się w odległości od 2000 do 5000 jednostek astronomicznych [1 j.a. to średnia odległość Ziemi od Słońca], a krawędź zewnętrzna może być oddalona od naszej gwiazdy o 10 000 lub nawet 100 000 j.a. Obłok składa się z olbrzymiej liczby obiektów. Uważa się, że komety długookresowe pochodzą właśnie z Obłoku Oorta. Samego jednak Obłoku, ze względu na jego olbrzymie oddalenie oraz fakt, że znajdujące się tam obiekty nie świecą światłem własnym, nie udało się zaobserwować. Dlatego też tak trudno badać ten obszar. Obliczenia Siraja i Loeba, opublikowane na łamach Monthly Notices of the Royal Astronomical Society, mogą mieć znaczenie również dla obiektów znajdujących się bliżej niż Obłok Oorta. Wyliczenia te sugerują bowiem, że wiele obiektów znajdujących się pomiędzy Słońcem a Saturnem pochodzi z przestrzeni międzygwiezdnej. A to by oznaczało, że w naszym niedalekim sąsiedztwie roi się od przybyszów z innych układów planetarnych, zauważa astrofizyk Matthew Holman. Rodzi się więc pytanie, czy znane nam asteroidy, znajdujące się stosunkowo niedaleko Ziemi nie przybyły spoza Układu Słonecznego. Pytanie jest o tyle zasadne, że o wielu asteroidach nie mamy zbyt wielu danych. Są one wykrywane, a później specjaliści ich już nie śledzą. Sądzimy, że to asteroidy, ale ich nie obserwujemy, nie mamy więc szczegółowych danych, mówi Holman. Dopiero przyszłe badania za pomocą technologii najnowszej generacji pozwolą nam stwierdzić, czy Siraj i Loeb mają rację. Jeszcze w bieżącym roku na szczycie Cerro Pachón w Chile zostanie uruchomione Vera C. Rubin Observatory (VRO). To supernowoczesne obserwatorium wyposażone będzie m.in. w najpotężniejszy aparat cyfrowy w dziejach – ważące trzy tonu urządzenie o rozdzielczości 3,2 gigapiksela. VRO będzie badało ciemną materię, asteroidy bliskie Ziemi, poszukiwało obiektów międzygwiezdnych i mapowało Drogę Mleczną. Kolejnym projektem badawczym, z którym specjaliści wiążą olbrzymie nadzieje jest Transneptunian Automated Occultation Survey (TAOS II). Jego celem będzie poszukiwanie niewielkich – poniżej 1 km średnicy – obiektów znajdujących się za Neptunem. TAOS II ma ruszyć w przyszłym roku. « powrót do artykułu
  2. Pedro Bernardinelli i Gary Bernstein z Univeristy of Pennsylvania odkryli gigantyczną kometę, która zmierza w stronę Słońca. Już w roku 2031 zbliży się ona na najmniejszą odległość od naszej gwiazdy. Kometa Bernardinelli-Bernstein, oficjalnie nazwana C/2014 UN271, została zauważona podczas analizy zdjęć z jednego z najdoskonalszych aparatów wykorzystywanych w astronomii. Amerykańscy naukowcy analizowali obrazy z lat 2013–2019 wykonane przez 570-megapikselowy Dark Energy Camera (DECam) umieszczony na Victor M. Blanco Telscope w Chile. Urządzenie jest wykorzystywane do monitorowania około 300 milionów galaktyk, a uzyskane dane służą do lepszego zrozumienia ciemnej materii. Uczeni, analizując około 80 000 obrazów, znaleźli na nich ponad 800 obiektów z Układu Słonecznego. Na 32 z nich zauważyli olbrzymią kometę, którą po raz pierwszy widać na zdjęciach z roku 2014. Opierając się na ilości światła odbijanego przez kometę Bernardinelli-Bernstein, jej odkrywcy stwierdzili, że ma ona średnicę 100–200 kilometrów. To około 10-krotnie więcej niż średnica przeciętnej komety. Masa olbrzyma jest zaś około 1000-krotnie większa niż masa przeciętnej komety. To zaś oznacza, że mamy do czynienia z największą kometą odkrytą w czasach współczesnych oraz z największym znanym nam obiektem pochodzącym z Obłoku Oorta. Na pierwszym z wykonanych zdjęć kometa znajduje się w odległości około 25 jednostek astronomicznych (j.a.) od Słońca, czyli mniej więcej w takiej odległości jak Neptun. Uczeni oceniają jednak, że swoją podróż rozpoczęła z Obłoku Oorta, znajdującego się około 40 000 j.a. od naszej gwiazdy. Obecnie kometa Bernardinelli-Bernstein znajduje się w odległości 20 j.a. od Słońca. Z ostatnich zdjęć wynika, że jej powierzchnia na tyle się rozgrzała, że pojawił się warkocz. Jego utworzenie się pozwala oficjalnie zakwalifikować obiekt jako kometę. Pomimo olbrzymich rozmiarów i masy, nie musimy przejmować się obecnością komety. Z wyliczeń jej trajektorii wynika, że podleci ona do Słońca nie bliżej niż na odległość 11 j.a. Dla przypomnienia – jednostka astronomiczna to średnia odległość pomiędzy Ziemią a Słońcem. Bernardinelli-Bernstein nie zbliży się więc do Ziemi bliżej niż Saturn. To na tyle duża odległość, że giganta najprawdopodobniej nie będzie można obserwować gołym okiem. « powrót do artykułu
  3. Astrofizycy z Uniwersytetu Harvarda opublikowali na łamach The Astrophysical Journal Letters teorię, zgodnie z którą Słońce było kiedyś częścią układu podwójnego. Nasza gwiazda miała krążącego wokół niej towarzysza o podobnej masie. Jeśli teoria ta zostanie potwierdzona, zwiększy to prawdopodobieństwo istnienia Obłoku Oorta w takim kształcie, jak obecnie przyjęty i będzie można uznać teorię mówiącą, że tajemnicza Dziewiąta Planeta (Planeta X) została przez Układ Słoneczny przechwycona, a nie uformowała się w nim. Autorzy nowej teorii – profesor Avi Loeb i jego student Amir Siraj – postulują, że obecność towarzysza Słońca w klastrze, w którym gwiazdy się uformowały, pozwala wyjaśnić istnienie Obłoku Oorta. Naukowcy mówią, że dotychczasowe teorie pozostawiały wiele niewyjaśnionych zagadnień związanych z Obłokiem Oorta. Przyjęcie, że Słońce było częścią układu podwójnego, pozwala wyjaśnić liczne wątpliwości. Tym bardziej, że nie jest to wcale nieprawdopodobne. Większość gwiazd podobnych do Słońca zaczyna życie w układach podwójnych, mówią uczeni. Jeśli Obłok Oorta rzeczywiście został utworzony z obiektów przechwyconych dzięki pomocy towarzysza Słońca, to będzie to niosło istotne implikacje dla naszego rozumienia uformowania się Układu Słonecznego. Układy podwójne znacznie efektywniej przechwytują różne obiekty niż pojedyncze gwiazdy. Jeśli Obłok Oorta rzeczywiście tak się utworzył, będzie to znaczyło, że Słońce miało towarzysza o podobnej masie, stwierdza Loeb. Przyjęcie teorii o układzie podwójnym ma też znaczenie dla wyjaśnienia pojawienia się życia na Ziemi. Obiekty z zewnętrznych części Obłoku Oorta mogły odgrywać istotną rolę historii Ziemi. Mogły dostarczyć tutaj wodę i spowodować zagładę dinozaurów. Zrozumienie ich pochodzenia jest bardzo ważne, przypomina Siraj. Obaj naukowcy podkreślają, że ich teoria ma też znacznie dla wyjaśnienia zagadki Planety X. Dotyczy to nie tylko Obłoku Oorta ale również ekstremalnie dalekich obiektów transneptunowych, takich jak Dziewiąta Planeta. Nie wiadomo, skąd one pochodzą, jednak nasz model przewiduje, że jest więcej obiektów o orbitach takich jak Dziewiąta, stwierdza Loeb. Obecnie nie posiadamy instrumentów, które pozwoliłyby zaobserwować Obłok Oorta czy Dziewiątą Planetę. Jednak już w przyszłym roku ma zacząć działać Vera C. Rubin Observatory (VRO). Będzie ono w stanie zweryfikować istnienie Dziewiątej Planety. Jeśli VRO potwierdzi, że Dziewiąta Planeta istnieje i została przechwycona oraz zaobserwuje podobnie przechwycone planety karłowate, wtedy model binarny zyska przewagę nad obecnymi teoriami o początkach Słońca, mówi Siraj. « powrót do artykułu
  4. Voyager 2 stał się drugim w historii pojazdem wysłanym przez człowieka, który opuścił heliosferę. Na podstawie analizy danych przesłanych przez różne instrumenty naukowcy z NASA doszli do wniosku, że Voyager 2 przekroczył zewnętrzną krawędź heliosfery – heliopauzę – 5 listopada. Heliopauza to miejsce, w którym gorący wiatr słoneczny napotyka na zimny gęsty ośrodek międzygwiezdny. Bliźniaczy Voyager 1 przeciął heliopauzę w 2012 roku, warto jednak przypomnieć, że na pokładzie Voyagera 2 znajduje się instrument, który pozwoli naukowcom lepiej przyjrzeć się heliopauzie. Obecnie Voyager 2 znajduje się w odległości 18 miliardów kilometrów do Ziemi. Wysyłane przez niego sygnały potrzebują 16,5 godziny, by dotrzeć do centrum kontroli NASA. Najbardziej przekonujący dowód na to, że Voyager 2 opuścił heliosferę pochodzi z instrumentu Plasma Science Experiment (PLS). Voyager 1 nie przysłał takich danych, gdyż jego PLS przestał działać w 1980 roku. Dotychczas przestrzeń wokół Voyagera 2 była wypełniona głównie plazmą pochodzącą ze Słońca, wiatrem słonecznym. To właśnie on tworzy bąbel, heliosferę. PLS wykrywa prędkość, gęstość, temperaturę, ciśnienie i przepływ wiatru słonecznego. Dnia 5 października instrument zarejestrował gwałtowny spadek prędkości wiatru słonecznego. Od tamtej pory nie wykrywa jego przepływu. Jednocześnie z trzech innych instrumentów, wykrywających promieniowanie kosmiczne, niskoenergetyczne cząstki oraz pole magnetyczne, nadeszły informacje, które są zgodne z wnioskiem o przecięciu helipauzy. Mimo, że oba Voyagery znajdują się poza heliopauzą, to nie opuściły jeszcze Układu Słonecznego. Jego granica znajduje się bowiem poza Obłokiem Oorta. To hipotetyczny zbiór drobnych okruchów, pyłu i planetoid obiegających Słońce. Uważa się, że zewnętrzne granice Obłoku Oorta wyznaczają granice dominacji grawitacyjnej Układu Słonecznego. Obłok Oorta znajduje się w odległości od 1000 do 100 000 jednostek astronomicznych od Słońca. Voyager 2 dotrze do Obłoku Oorta za około 300 lat, a opuści go prawdopodobnie za 30 000 lat. « powrót do artykułu
×
×
  • Dodaj nową pozycję...