Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wiemy, gdzie wyląduje misja Mars 2020

Rekomendowane odpowiedzi

NASA zdecydowała, że łazik misji Mars 2020 wyląduje w kraterze Jezero. Ostateczna decyzja zapadła po pięciu latach konsultacji, w czasie których brano pod uwagę 60 różnych lokalizacji. Każda z nich była analizowana i omawiana zarówno przez zespół naukowy pracujący przy misji, jak i przez światową społeczność specjalistów zajmujących się badaniem planet.

Misja Mars 2020 ma wyruszyć w lipcu 2020 roku. Jej zadaniem będzie poszukiwanie śladów dawnego życia oraz zebranie próbek, które w przyszłości mają zostać przywiezione na Ziemię. NASA i ESA już opracowują koncepcje przyszłej misji, która przywiezie te próbki, dlatego też wybór miejsca lądowania misji Mars 2020 jest jednocześnie wyborem miejsca lądowania dla misji przywiezienia próbek.

Krater Jezero oferuje nam teren bogaty pod względem geologicznym, w którym znajdują się formacje powstałe przez 3,6 miliardami lat. Mogą one dać odpowiedź na istotne pytania dotyczące astrobiologii i ewolucji planet. Zebranie próbek z tych miejsc zrewolucjonizuje naszą wiedzę o Marsie i jego zdolności do utrzymania życia, mówi Thomas Zurbuchen, administrator w Dyrektoriacie Misji Naukowych NASA.

Krater Jezero znajduje się na wschodniej krawędzi wielkiego basenu uderzeniowego Isidis Planitia. Krater ma średnicę 45 kilometrów, w przeszłości płynęła w nim rzeka. Naukowcy sądzą, że mogą się tam znajdować molekuły organiczne i inne ślady dawnego życia naniesione przez wodę. W kraterze znajduje się co najmniej pięć różnych rodzajów skał, w tym gliny i skały węglanowe.

Jezero to miejsce bardzo obiecujące pod względem naukowym, ale trudne pod względem inżynieryjnym. Na wschodzie znajduje się tam wiele kamieni i skał, na zachodzie są klify, a w wielu miejscach występują obniżenia terenu wypełnione luźnym materiałem naniesionym przez wiatry, w których łazik może zatonąć. Specjaliści od eksploracji Marsa od dawna zwracali uwagę na wartość naukową takich miejsc jak krater Jezero. Podczas poprzednich misji rozważano lądowanie tam, jednak uznawano, że jest to niemożliwe. Jednak to, co kiedyś było niemożliwe, teraz – dzięki pracy zespołu inżynieryjnego misji Mars 2020 oraz rozwojowi technologii weścia w atmosferę, obniżania i posadowienia łazika na powierzchni – wydaje się osiągalne, mówi Ken Farley odpowiedzialny za Mars 2020 z ramienia Jet Propulsion Laboratory.

O tym, jak wielki postęp dokonał się w ostatnich latach, niech świadczy fakt, że inżynierowie misji Mars 2020 przekazali naukowcom rozważającym miejsca lądowania, iż są w stanie posadowić łazik na obszarze o 50% mniejszym niż miejsce lądowania Curiosity. Dzięki temu naukowcy mogli brać pod uwagę więcej potencjalnych miejsc lądowania. Skoro zaś naukowcy mogli wybrać bardziej interesujące, ale trudniejsze, lądowiska, to NASA rozwinęła technologię o nazwie Terrain Relative Navigation (TRN), która pozwala dźwigowi przeprowadzającemu lądowanie łazika na bardziej precyzyjną nawigację względem terenu. TRN jest obecnie testowana. Ostateczny raport na temat jej możliwości i niezawodności, opracowany przez niezależną komisję, zostanie przedstawiony NASA jesienią 2019 roku. Wtedy to zostanie wybrane konkretne miejsce lądowania w Jezero.

Lądowanie na Marsie jest najtrudniejszym wyzwaniem w eksploracji planetarnej. Zespół inżynierów Mars 2020 wykonał wspaniałą robotę. Wciąż pracują oni nad lepszym zrozumieniem systemu TRN i związanych z nim ryzyk. Niezależni eksperci przyjrzą się pracy tego zespołu, dzięki czemu będziemy mogli zmniejszyć ryzyko, dodaje Zurbuchen.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po 2,5 roku pracy na dnie Krateru Jezero łazik Perseverance przygotowuje się do wielomiesięcznej wspinaczki na zachodnią krawędź Krateru. Prawdopodobnie napotka tam najbardziej stromy i najtrudniejszy teren, z jakim przyszło mu się dotychczas zmierzyć. Perseverance wyruszy w podróż 18 sierpnia, a wspinaczka i badanie terenu będą już 5. kampanią naukową prowadzoną od czasu lądowania 18 lutego 2021 roku.
      Perseverance zakończył 4 projekty badawcze, zebrał 22 próbki skał i przejechał ponad 18 mil. Zaczynamy teraz Crater Rim Campaign. Łazik jest w doskonałym stanie, a my nie możemy się doczekać, by zobaczyć, co jest na szczycie badanego przez nas obszaru, mówi Art Thompson, menedżer projektu Perseverance w Jet Propulsion Laboratory.
      Głównymi celami najnowszej kampanii badawczej są dwa miejsca, nazwane „Pico Turquino” oraz „Witch Hazel Hill”. Na zdjęciach z orbiterów krążących wokół Marsa widać, że na Pico Turquino znajdują się stare pęknięcia, które mogą powstać w wyniku zjawisk hydrotermalnych. Z kolei warstwy, z których zbudowane jest Witch Hazel Hill sugerują, że struktura ta powstała w czasach, gdy na Marsie panował zupełnie inny klimat niż obecnie. Zdjęcia ujawniły tam podłoże skalne o jaśniejszym kolorze, podobne do tego, które łazik znalazł na obszarze zwanym „Bright Angel”. Tamtejsza skała „Cheyava Falls” miała strukturę i sygnatury chemiczne wskazujące, że mogła powstać przed miliardami lat w wyniku działania organizmów żywych w środowisku wodnym.
      Podczas podróży ku krawędzi krateru Perseverance będzie polegał na półautomatycznych mechanizmach, których celem jest unikanie zbyt dużego ryzyka. Ma wspinać się po stokach nachylonych nawet o 23 stopnie i unikać miejsc, których nachylenie będzie wynosiło ponad 30 stopni. Łazik wjedzie na wysokość 300 metrów i zakończy podróż w miejscu nazwanym „Aurora Park”.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA wybrała sześć niewielkich amerykańskich firm, które w sumie otrzymają 20 milionów dolarów na rozwój technologii usuwania odpadów z niskiej orbity okołoziemskiej oraz rozwiązania problemu pyłu osiadającego na urządzeniach pracujących poza Ziemią. Prowadzone przez nas misje wymagają innowacyjnych rozwiązań złożonych wyzwań pojawiających się podczas pobytu w kosmosie. Niewielkie firmy mogą mieć wielki wpływ na rozwiązanie problemów od dawna gnębiących przemysł kosmiczny, mówi Jenn Gustetic,  dyrektor ds. wstępnych innowacji i partnerstwa w NASA Space Technology Mission Directorate.
      Sześć wspomnianych firm współpracowało już z NASA w ramach programu Small Business Innovation Research. W jego ramach NASA przeznacza co roku 180 milionów USD na współpracę z amerykańskimi przedsiębiorstwami zatrudniającymi mniej niż 500 osób. Pieniądze od agencji kosmicznej pozwalają im na dalsze rozwijanie obiecujących technologii. Każda z firm wybranych do współpracy w bieżącym roku ma mniej niż 60 pracowników.
      Na niskiej orbicie okołoziemskiej ludzie pozostawiają coraz więcej śmieci. To zepsute satelity i ich fragmenty czy pozostałości po wystrzeliwaniu kolejnych misji. Odpady te zmuszają pojazdy kosmiczne do manewrowania, zagrażają bezpieczeństwu astronautów i satelitów. Z czasem cała orbita może stać się bezużyteczna. Cztery z wybranych przedsiębiorstw proponują technologie, które mają rozwiązać ten problem.
      Firma Busek otrzyma 3,4 miliona USD na rozwój technologii autonomicznego deorbitowania niewielkich satelitów przy użyciu nietoksycznego paliwa. Z kolei CU Aerospace ma za 2,6 miliona USD stworzyć napęd wielokrotnego użytku do niewielkich misji przechwytujących odpady na orbicie. Firmie Flight Works przyznano 4 miliony dolarów na rozwinięcie technologii tankowania na orbicie pojazdów zajmujących się usuwaniem odpadów, a Vestigo Aerospace ma zademonstrować działający żagiel Spinnaker, który – montowany za pomocą prostego połączenia mechanicznego i elektrycznego – będzie rozwijany po zakończeniu misji małych (do 180 kg) satelitów, zwiększając w ten sposób opór stwarzany przez atmosferę i pozwalając na szybsze, przewidywalne i całkowicie pasywne deorbitowanie takich pojazdów.
      Przyszłe misje NASA będą obejmowały roboty podróżujące po powierzchni Marsa i Księżyca. Osiadający na tych urządzeniach pył może znacząco skrócić czas ich pracy czy doprowadzić do awarii instrumentów naukowych. Pył jest też niebezpieczny dla urządzeń, które będą potrzebne podczas misji załogowych. Rozwiązaniem tego problemu mają zająć się dwa kolejne przedsiębiorstwa. Firma Applied Material System Engineering ma za 2,6 miliona USD zademonstrować system nakładania w przestrzeni kosmicznej swojej powłoki ograniczającej osadzanie pyłu, a ATSP Innovations otrzyma 3,2 miliona USD na stworzenie prototypowego materiału odpornego na ekstremalne temperatury, ciśnienia i pył obecne na powierzchni planet, księżyców, asteroid i komet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA tymczasowo straciła kontakt z Voyagerem 2, drugim najodleglejszym od Ziemi pojazdem kosmicznym wysłanym przez człowieka. Przed dwoma tygodniami, 21 lipca, popełniono błąd podczas wysyłania serii komend do Voyagera, w wyniku czego jego antena odchyliła się o 2 stopnie od kierunku wskazującego na Ziemię. W tej chwili Voyager, który znajduje się w odległości niemal 20 miliardów kilometrów od naszej planety, nie może odbierać poleceń ani przesyłać danych.
      W wyniku zmiany położenia anteny Voyager nie ma łączności z Deep Space Network (DSN), zarządzaną przez NASA siecią anten służących do łączności z misjami międzyplanetarnymi. W skład DSN wchodzą trzy ośrodki komunikacyjne, w Barstow w Kalifornii, w pobliżu Madrytu i Canberry. Rozmieszczono je tak, by każda misja w głębokim kosmosie miała łączność z przynajmniej jednym zespołem anten. Ośrodek z Canberry, którego jedna z anten jest odpowiedzialna za komunikację z sondą, będzie próbował skontaktować się z Voyagerem, w nadziei, że uda się nawiązać łączność.
      Na szczęście NASA zabezpieczyła się na tego typu przypadki. Kilka razy w roku Voyagery resetują położenie swoich anten tak, by mieć łączność z Ziemią. Najbliższy reset nastąpi 15 października. Jeśli więc wcześniej nie uda się połączyć z Voyagerem, będzie można się z nim skomunikować za 2,5 miesiąca.
      Voyager 2 został wystrzelony 20 sierpnia 1977 roku. Odwiedził Jowisza, Saturna, Urana i Neptuna, a w 2018 roku opuścił heliosferę i wszedł w przestrzeń międzygwiezdną, dostarczając intrygujących wyników badań. NASA nie po raz pierwszy nie ma kontaktu z sondą. W 2020 roku agencja nie kontaktowała się z nią przez 8 miesięcy, gdyż remontowana była antena DSS 43 w pobliżu Canberry, której zadaniem jest wymiana informacji z sondą.
      Voyagery zasilane są radioizotopowymi generatorami termoelektrycznymi, które zamieniają w prąd elektryczny ciepło generowane przez rozpad plutonu-238. Zapasy plutonu stopniowo się wyczerpują, więc naukowcy wyłączają kolejne zużywające prąd urządzenia. Najprawdopodobniej obie sondy stracą zasilanie w 2025 roku. Do tej pory jednak naukowcy spróbują wycisnąć z nich najwięcej, jak się da.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA i DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych) poinformowały o rozpoczęciu współpracy, której celem jest zbudowanie jądrowego silnika termicznego (NTP) dla pojazdów kosmicznych. Współpraca będzie odbywała się w ramach programu DRACO (Demonstration Rocket for Agile Cislunar Operations), który od jakiegoś czasu prowadzony jest przez DARPA.
      Celem projektu jest stworzenie napędu pozwalającego na szybkie manewrowanie, przede wszystkim przyspieszanie i zwalnianie, w przestrzeni kosmicznej. Obecnie dysponujemy pojazdami, które są w stanie dokonywać szybkich manewrów na lądzie, w wodzie i powietrzu. Jednak w przestrzeni kosmicznej brakuje nam takich możliwości. Obecnie używane kosmiczne systemy napędowe – elektryczne i chemiczne – mają spore ograniczenia. W przypadku napędów elektrycznych ograniczeniem jest stosunek siły ciągu do wagi napędu, w przypadku zaś napędów chemicznych ograniczeni jesteśmy wydajnością paliwa. Napęd DRACO NTP ma łączyć zalety obu wykorzystywanych obecnie napędów. Ma posiadać wysoki stosunek ciągu do wagi charakterystyczny dla napędów chemicznych oraz być wydajnym tak,jak napędy elektryczne. Dzięki temu w przestrzeni pomiędzy Ziemią a Księżycem DRACO ma być zdolny do szybkich manewrów.
      Administrator NASA Bill Nelson powiedział, że silnik może powstać już w 2027 roku. Ma on umożliwić szybsze podróżowanie w przestrzeni kosmicznej, co ma olbrzymie znacznie dla bezpieczeństwa astronautów. Skrócenie czasu lotu np. na Marsa oznacza, że misja załogowa mogłaby zabrać ze sobą mniej zapasów, ponadto im krótsza podróż, tym mniejsze ryzyko, że w jej trakcie dojdzie do awarii. Jądrowy silnik termiczny może być nawet 4-krotnie bardziej wydajny niż silnik chemiczny, a to oznacza, że napędzany nim pojazd będzie mógł zabrać cięższy ładunek i zapewnić więcej energii dla instrumentów naukowych. W silniku takim reaktor jądrowy ma być wykorzystywany do generowania ekstremalnie wysokich temperatur. Następnie ciepło z reaktora trafiałoby do ciekłego paliwa, które – gwałtownie rozszerzając się i uchodząc z duża prędkością przez dysze – będzie napędzało pojazd.
      To nie pierwsza amerykańska próba opracowania jądrowego silnika termicznego. Na początku lat 60. ubiegłego wieku rozpoczęto projekt NERVA (Nuclear Engine for Rocket Vehicle Application). Projekt zaowocował powstaniem pomyślnie przetestowanego silnika. Jednak ze względu na duże koszty, prace nad silnikiem zakończono po 17 latach badań i wydaniu około 1,4 miliarda USD.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W czasie, gdy na Ziemię wracał Orion, z należącego do Pentagonu kosmodromu Cape Canaveral Space Force Station, wystartowała rakieta Falcon 9 z prywatną japońską misją Hakuto-R (Biały królik) na pokładzie. W ramach misji przygotowanej przez japońską firmę ispace w przestrzeń kosmiczną trafił jej lądownik księżycowy, łazik ze Zjednoczonych Emiratów Arabskich (ZEA), niewielki robot Japońskiej Agencji Kosmicznej (JAXA) oraz urządzenia z Kanady i USA. Lądowanie na Srebrnym Globie zaplanowano na kwiecień przyszłego roku. Dla porównania przypomnijmy, że Orion doleciał do Księżyca w ciągu 5 dni.
      ispace zaprojektowała misję tak, by zużyła jak najmniej paliwa. Pozwoliło to zaoszczędzić pieniądze oraz zabrać większy ładunek. Dlatego też pojazd ispace oddali się od Ziemi na odległość 1,6 miliona kilometrów, później zawróci i pod koniec kwietnia 2023 roku spotka na swojej drodze Księżyc. Lądownik ispace ma trafić do krateru Atlas. Zabrał on na pokład niewielkiego robota zbudowanego przez Japońską Agencję Kosmiczną (JAXA), który będzie poruszał się na kołach i badał powierzchnię Księżyca.

      Na Srebrnym Globie wyląduje też Rashid, łazik ZEA. Jest niewielki. Waży zaledwie 10 kilogramów i będzie pracował na powierzchni przez 10 dni. To zresztą nie pierwsza misja księżycowa niewielkiego arabskiego kraju. Na orbicie Srebrnego Globu znajduje się już satelita Zjednoczonych Emiratów Arabskich.

      Celem Rashida jest prowadzenie badań nieeksplorowanego dotychczas regiony Księżyca oraz testowanie technologii, które mogą być przydatne podczas załogowej misji na Marsa. Jeśli się uda, będzie to pierwsza misja Emiratów i jakiegokolwiek kraju arabskiego zakończona lądowaniem na Księżycu.

      Na pokładzie misji ispace znalazł się też kanadyjski komputer wyposażony w algorytmy sztucznej inteligencji, który będzie identyfikował utwory geologiczne napotkane przez łazik z Emiratów oraz kanadyjskie kamery o polu widzenia 360 stopni. Japończycy zabrali też przygotowany przez NASA laser, który będzie poszukiwał lodu w ciągle zacienionych kraterach na biegunie południowym Księżyca.

      Firma ispace to jedno z niewielu prywatnych przedsiębiorstw, które próbują przeprowadzić lądowanie na Księżycu. Dotychczas miękkie lądowanie na Srebrnym Globie udawało się tylko państwowym agencjom kosmicznym USA, ZSRR i Chin.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...