Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Dodanie dosłownie szczypty kory magnolii do miętusów lub gumy do żucia eliminuje większość mikroorganizmów odpowiadających za nieświeży oddech.W większości przypadków pojawia się on w sytuacji, gdy bakterierozkładają w ustach białka, w wyniku czego tworzą się związkizawierające siarkę.

Ludzie często narzekają na antybakteryjne płyny do płukania jamy ustnej, ponieważ wywołują one m.in. przebarwienia na zębach. Ekstrakt z kory magnolii jest od stuleci wykorzystywany w medycynie chińskiej. Za jego pomocą zwalcza się ból głowy, gorączkę oraz stres. Współczesne badania ujawniły, że skutecznie niszczy bakterie, nadaje się do leczenia wrzodów i co bardzo ważne – wykazuje niską toksyczność, a więc powoduje niewiele efektów ubocznych.

Naukowcy pracujący dla Wrigleya postanowili sprawdzić, czy magnolia poradzi sobie z bakteriami odpowiedzialnymi za halitozę i czy można ją wykorzystać jako dodatek do gum i cukierków. Zespół Minmina Tana odkrył, że ekstrakt silnie oddziałuje na 3 szczepy bakteryjne. Testy laboratoryjne wykazały, że w ciągu 5 minut słodycze z dodatkami zabijały 99,9% bakterii (Journal of Agricultural and Food Chemistry).

Kiedy przeprowadzono badania na 9 pracownikach Wrigleya, uzyskano mniej spektakularne rezultaty, dalej jednak były one istotne. W ciągu 30 min cukierki unieszkodliwiały ponad 61% bakterii wywołujących halitozę. To wynik porównywalny z osiąganym przy zastosowaniu płynu do płukania ust. Miętówki bez dodatku kory magnolii eliminują tylko 3,6% bakterii.

Guma działała słabiej niż cukierki. Wskutek jej żucia po 40 minutach znikało 43% "winnych". Balonówka bez ekstraskładnika eliminowała jedynie 18% monitorowanych bakterii.

Ekstrakt pomagał też w zwalczaniu bakterii wywołujących próchnicę. Minie jednak sporo czasu, zanim magnoliowe słodycze trafią do sprzedaży...

Share this post


Link to post
Share on other sites

guma czosnkowa?próbowałem chyba,na początku niemal zwymiotowałem,potem nawet ją tolerowałem,nie wiem czy było tam coś z prawdziwego czosnku,ale smak miała podobny :) PS:szkoda,że na półkach już nie widuje gum "shock" czy "szok"

Share this post


Link to post
Share on other sites

Tak samo pewnie dobra, jak i trująca :) Chociaż sam wcinałem ją kilogramami jak się tylko pojawiła...

Share this post


Link to post
Share on other sites

guma czosnkowa?próbowałem chyba,na początku niemal zwymiotowałem,potem nawet ją tolerowałem,nie wiem czy było tam coś z prawdziwego czosnku,ale smak miała podobny :) PS:szkoda,że na półkach już nie widuje gum "shock" czy "szok"

 

u mnie jest dużo takich gum jak shock  ;D

 

A ta z Magnolią ... ciekawe ...

Share this post


Link to post
Share on other sites

Bardziej wszechstronny w likwidacji mikroorganizmów niż magnolia bo również likwiduje grzybki candida jest olejek z oregano

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył wielką bazę danych wszystkich znanych genomów bakteryjnych obecnych w mikrobiomie ludzkich jelit. Baza umożliwia specjalistom badanie związków pomiędzy genami bakterii a proteinami i śledzenie ich wpływu na ludzkie zdrowie.
      Bakterie pokrywają nas z zewnątrz i od wewnątrz. Wytwarzają one proteiny, które wpływają na nasz układ trawienny, nasze zdrowie czy podatność na choroby. Bakterie są tak bardzo rozpowszechnione, że prawdopodobnie mamy na sobie więcej komórek bakterii niż komórek własnego ciała. Zrozumienie wpływu bakterii na organizm człowieka wymaga ich wyizolowania i wyhodowania w laboratorium, a następnie zsekwencjonowania ich DNA. Jednak wiele gatunków bakterii żyje w warunkach, których nie potrafimy odtworzyć w laboratoriach.
      Naukowcy, chcąc zdobyć informacje na temat tych gatunków, posługują się metagenomiką. Pobierają próbkę interesującego ich środowiska, w tym przypadku ludzkiego układu pokarmowego, i sekwencjonują DNA z całej próbki. Następnie za pomocą metod obliczeniowych rekonstruują indywidualne genomy tysięcy gatunków w niej obecnych.
      W ubiegłym roku trzy niezależne zespoły naukowe, w tym nasz, zrekonstruowały tysiące genomów z mikrobiomu jelit. Pojawiło się pytanie, czy zespoły te uzyskały porównywalne wyniki i czy można z nich stworzyć spójną bazę danych, mówi Rob Finn z EMBL's European Bioinformatics Institute.
      Naukowcy porównali więc uzyskane wyniki i stworzyli dwie bazy danych: Unified Human Gastrointestinal Genome i Unified Gastrointestinal Protein. Znajduje się w nich 200 000 genomów i 170 milionów sekwencji protein od ponad 4600 gatunków bakterii znalezionych w ludzkim przewodzie pokarmowym.
      Okazuje się, że mikrobiom jelit jest nie zwykle bogaty i bardzo zróżnicowany. Aż 70% wspomnianych gatunków bakterii nigdy nie zostało wyhodowanych w laboratorium, a ich rola w ludzkim organizmie nie jest znana. Najwięcej znalezionych gatunków należy do rzędu Comentemales, który po raz pierwszy został opisany w 2019 roku.
      Tak olbrzymie zróżnicowanie Comentemales było wielkim zaskoczeniem. To pokazuje, jak mało wiemy o mikrobiomie jelitowym. Mamy nadzieję, że nasze dane pozwolą w nadchodzących latach na uzupełnienie luk w wiedzy, mówi Alexancre Almeida z EMBL-EBI.
      Obie imponujące bazy danych są bezpłatnie dostępne. Ich twórcy uważają, że znacznie się one rozrosną, gdy kolejne dane będą napływały z zespołów naukowych na całym świecie. Prawdopodobnie odkryjemy znacznie więcej nieznanych gatunków bakterii, gdy pojawią się dane ze słabo reprezentowanych obszarów, takich jak Ameryka Południowa, Azja czy Afryka. Wciąż niewiele wiemy o zróżnicowaniu bakterii pomiędzy różnymi ludzkimi populacjami, mówi Almeida.
      Niewykluczone, że w przyszłości katalogi będą zawierały nie tylko informacje o bakteriach żyjących w naszych jelitach, ale również na skórze czy w ustach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na zębach ludzi, żyjących niemal 9 tys. lat temu na terenie dzisiejszej Polski, naukowcy wykryli ślady próchnicy. Najstarsze oznaki tej bakteryjnej choroby mogły być efektem spożywania owoców i miodu - przypuszczają badający to zjawisko naukowcy z UKSW w Warszawie.
      Próchnica to dziś choroba bardzo rozpowszechniona. Z analiz opublikowanych w 2015 r. przez międzynarodowy zespół kierowany przez prof. Wagnera Marcenesa z Queen Mary University w Londynie wynika, że na nieleczoną próchnicę cierpi ponad 2,4 mld ludzi. Co roku pojawia się ponad 190 milionów nowych zachorowań.
      Badacze odległej przeszłości człowieka zakładali, że próchnica stała się powszechna dopiero w czasach, kiedy człowiek zaczął prowadzić osiadły tryb życia i korzystać z bardziej przetworzonych produktów zbożowych. Na terenie Polski pierwsi rolnicy pojawili się około 7 tys. lat temu. Dlatego najnowsze wyniki badań zębów ludzi, którzy żyli w obecnej północno-wschodniej Polsce jeszcze tysiące lat wcześniej, czyli niemal 9 tys. lat temu - są dla naukowców pewnym zaskoczeniem.
      Próchnicę wykryliśmy zarówno na zębach trzyletniego dziecka, jak i dwóch dorosłych osób - opowiada PAP prof. Jacek Tomczyk z Instytutu Nauk Biologicznych Uniwersytetu Kardynała Stefana Wyszyńskiego (UKSW) w Warszawie. Szczątki pochodzą z dwóch miejsc: Pierkunowa-Giżycka na Mazurach i Woźnejwsi na skraju Biebrzańskiego Parku Narodowego. W przypadku szczątków dziecka zachowały się nawet fragmenty jego żuchwy i szczęki.
      Wszystkie wspomniane kości odkryto jeszcze w latach 60. XX w. Jak mówi prof. Tomczyk, wcześniej do ich badań zastosowano metody makroskopowe - wykonano podstawowe pomiary metryczne, określono też wiek i płeć osobników. Wówczas jednak nie stwierdzono u nich chorób zębów.
      Teraz jednak w ocenie chorób zębów stosowane są nie tylko metody makroskopowe. Do analiz wykorzystaliśmy kamerę fluorescencyjną i różne metody obrazowania rentgenowskiego. W ten sposób wykryliśmy próchnicę, która nie była dużym ubytkiem szkliwa - dodaje naukowiec. Ślady próchnicy zachowały się na zębach trzonowych, bogatych w bruzdy i zagłębienia, o nieregularnej powierzchni. Trudno, rzecz jasna, spekulować, czy próchnica ta rozwinęłaby się dalej, gdyby pradziejowi właściciele zębów żyli dłużej.
      Dzięki analizom izotopów węgla i azotu badacze ustalili, z czego składała się dieta zmarłych.
      W dużej mierze spożywali oni ryby, zapewne jesiotry. Ryby słodkowodne zawierają argininę, która ma działanie przeciwpróchnicze. Ta substancja jest nawet dziś dodawana do niektórych past do zębów. Wygląda więc na to, że dzięki diecie próchnica nie rozwinęła się u nich bardziej - sugeruje antropolog, prof. Krzysztof Szostek z Instytutu Nauk Biologicznych UKSW w Warszawie, który zajmował się analizami izotopów.
      Nasi przodkowie, żyjący w okresie mezolitu - epoce między paleolitem (starszą epoką kamienia) a neolitem (młodszą epoką kamienia, kiedy upowszechniło się rolnictwo) - często łowili ryby. Używali do tego harpunów, a nawet sieci plecionych z włókien roślinnych. Wówczas też po raz pierwszy korzystali z łodzi wiosłowych, tzw. dłubanek - wykonanych z pojedynczego pnia drzewa.
      Dlaczego próchnica pojawiła się w zębach osób, które prowadziły zbieracko-łowiecki tryb życia? Naukowcy wskazują, że ludzie ci żywili się tym, co znaleźli. Bywały to jagody i inne owoce runa leśnego, a może i miód. To oznaczać może całkiem sporo węglowodanów, które sprzyjają próchnicy.
      Próchnica ma różne przyczyny. Nie jest ona związana wyłącznie z dietą. Zależy też od nawyków żywieniowych - częstości spożywania posiłków czy składu i pH śliny. Chociaż osoby spożywające więcej słodkich produktów mają większe ryzyko rozwinięcia próchnicy. Z badań przeprowadzonych na szczątkach z tego samego okresu z Europy Południowej i Zachodniej - Hiszpanii czy Portugalii - wiemy, że tam próchnica była bardziej powszechna niż na obszarze północnej Europy. Zapewne jednym z głównych czynników tej różnicy była właśnie dieta - uważa prof. Szostek.
      Artykuł na temat badań ukazał się w Journal of Archaeological Science – Reports.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Probiotyk z syczuańskich kiszonek - szczep pałeczek kwasu mlekowego Lactobacillus plantarum K41 - może pomóc w zapobieganiu próchnicy. Znacząco hamuje bowiem tworzenie biofilmów Streptococcus mutans, a więc bakterii uznawanych za główny czynnik etiologiczny powstawania próchnicy.
      Kiszonki stanowią integralną część diety południowo-zachodnich Chin. Podczas kiszenia warzyw i owoców bakterie rozkładają naturalne cukry proste.
      Lactobacilus plantarum są wykorzystywane do konserwowania gotowanego mięsa, przypraw i produktów mlecznych. Przy okazji bakterie te zapewniają szereg korzyści zdrowotnych, np. stabilizują mikroflorę jelit, obniżają poziom cholesterolu i jak się teraz okazało, hamują próchnicę.
      Zgodnie z wynikami badania opublikowanego na łamach pisma Frontiers in Microbiology, w przypadku szczepu L. plantarum K41 wskaźnik zahamowania wzrostu biofilmu S. mutans w kohodowli wynosił aż 98,4%.
      Prof. Ariel Kushmaro i Stella Goldstein-Goren z Uniwersytetu Ben Guriona oraz zespół z Chin ujawnili, że z różnych rejonów Syczuanu pobrano w sumie 14 próbek kiszonek. Wyekstrahowano 54 szczepy Lactobacilli. Szczególnie obiecujący okazał się wspomniany L. plantarum K41. Co ważne, wykazywał on wysoką tolerancję na występowanie kwasów i soli (NaCl). Naukowcy uważają, że można pomyśleć o dodawaniu L. plantarum K41 do produktów nabiałowych.
      Charakterystycznymi dla kuchni syczuańskiej dodatkami do potraw są np. zha cai czy ya cai. Ya cai powstaje z górnej części łodygi gorczycy sarepskiej (kapusty sitowatej), zaś zha cai z dolnej (w przypadku zha cai kiszone są guzowate zgrubienia na łodydze wielkości pięści). Ya cai jest bardziej pikantne od zha cai. Technika przyrządzania ya cai i zha cai przypomina proces przygotowywania koreańskiego kimchi.
      Jak poinformował nas profesor Ariel Kushmaro, podczas badań użyto jednak tradycyjnych paocai. W kiszonkach tych wykorzystuje się niemal dowolne warzywa, a fermentacja odbywa się w płynie. Natomiast do kiszonek ya cai i zha cai używa się – odpowiednio – tylko liści lub tylko dolnej części łodygi Brassica juncea, które najpierw częściowo się suszy, a dopiero później poddaje fermentacji beztlenowej. Kiszonki paocai mają smak kwaśny i słony, natomiast zha cai i ya cai nie muszą być kwaśne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dobra wiadomość, dla wszystkich, których lękiem napawa wizja borowania podczas wizyty u dentysty. Opracowano antypróchnicową powłokę, która podczas eksperymentów nie tylko zapobiegała powstawaniu nowych ubytków, ale i leczyła te już istniejące.
      Obecnie próchnicę leczy się, usuwając uszkodzone tkanki zęba i zakładając w ich miejsce materiał do odbudowy, np. kompozyt. Jak jednak podkreślają Hai Ming Wong, Quan Li Li i pozostali autorzy artykułu z pisma ACS Applied Materials & Interfaces, procedura ta niesie za sobą ryzyko uszkodzenia zdrowej tkanki i dla niektórych pacjentów jest mocno nieprzyjemna.
      Chińczycy postanowili więc opracować strategię, która działałaby na dwa sposoby. Po pierwsze, miałaby ona zapobiegać kolonizacji powierzchni zębów przez bakterie tworzące płytkę. Po drugie, powinna ona ograniczać demineralizację ("rozpuszczanie" szkliwa)  i w zamian zwiększać remineralizację, czyli naprawę.
      Powłoka przeciwpróchnicowa bazowała na naturalnym peptydzie antydrobnoustrojowym H5. Jest on wytwarzany w ludzkich śliniankach. Może przywierać do szkliwa i niszczyć całą gamę bakterii i grzybów. By sprzyjać remineralizacji, Chińczycy zmodyfikowali H5, dodając na jednym z jego końców resztę fosfoserynową; miało to pomóc w "przyciąganiu" większej liczby kationów wapnia.
      Zmodyfikowany peptyd przetestowano na wycinkach ludzkich zębów trzonowych. Okazało się, że w porównaniu do naturalnego peptydu, nowy H5 silniej przywierał do powierzchni, zabijał więcej bakterii i hamował ich przywieranie. Skuteczniej chronił też przed demineralizacją. Ku zaskoczeniu badaczy, oba peptydy w podobnym stopniu wspomagały remineralizację.
      Chińczycy snują plany, że w przyszłości, by uchronić się przed próchnicą, po szczotkowaniu ludzie będą nakładać na zęby zmodyfikowany peptyd; preparat może mieć postać np. żelu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...