Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Japończycy obudzili bakterie z czasów dinozaurów

Recommended Posts

W 2010 roku japońska ekspedycja naukowa wybrała się do Wiru Południowopacyficznego (South Pacyfic Gyre). Pod nim znajduje się jedna z najbardziej pozbawionych życia pustyń na Ziemi. W pobliżu centrum SPG znajduje się oceaniczny biegun niedostępności. A często najbliżej znajdującymi się ludźmi są... astronauci z Międzynarodowej Stacji Kosmicznej. Tutejsze wody są tak pozbawione życie, że 1 metr osadów tworzy się tutaj przez milion lat.

Centrum SPG jest niemal nieruchome, jednak wokół niego krążą prądy oceaniczne, przez które do centrum dociera niewiele składników odżywczych. Niewiele więc tutaj organizmów żywych.

Japońscy naukowcy pobrali z dna, znajdującego się 6000 metrów pod powierzchnią, rdzeń o długości 100 metrów. Mieli więc w nim osady, które gromadziły się przez 100 milionów lat.

Niedawno poinformowali o wynikach badań rdzenia. Tak, jak się spodziewali, znaleźli w osadach bakterie, było ich jednak niewiele, od 100 do 3000 na centymetr sześcienny osadów. Później jednak nastąpiło coś, czego się nie spodziewali. Po podaniu pożywienia bakterie ożyły.

Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut). Jednak wystarczyło to, by po 68 dniach bakterii było 10 000 razy więcej niż pierwotnie.

Weźmy przy tym pod uwagę, że mówimy o bakteriach sprzed 100 milionów lat. O mikroorganizmach, które żyły, gdy planeta była opanowana przez dinozaury. Minęły cztery ery geologiczne, a one – chronione przed promieniowaniem kosmicznym i innymi wpływami środowiska przez kilometry wody – czekały w uśpieniu.

Jeśli teraz uświadomimy sobie, że 70% powierzchni planety jest pokryte osadami morskimi, możemy przypuszczać, że znajduje się w nich wiele nieznanych nam, uśpionych mikroorganizmów sprzed milionów lat.

Kolejną niespodzianką był fakt, że znalezione przez Japończyków bakterie korzystają z tlenu. Osady, z których je wyodrębniono, są pełne tlenu. Problemem w SPG nie jest zatem dostępność tlenu, a pożywienia.

To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów). Bakterie przetrwały w inny sposób. Jeszcze większą niespodzianką było znalezienie w jednej z próbek dobrze funkcjonującej populacji cyjanobakterii z rodzaju Chroococcidiopsis. To bakterie potrzebujące światłą, więc zagadką jest, jak przetrwały 13 milionów lat w morskich osadach na głębokości 6000 metrów. Z drugiej strony wiemy, że jest niektórzy przedstawiciele tego rodzaju są wyjątkowo odporni. Tak odporny, że niektórzy mówią o wykorzystaniu ich do terraformowania Marsa.

Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Ciekawe badanie. Od razu podejrzewałem, że bakterie były żywe, bo DNA nie ma stosunkowo krótki czas połowicznego rozpadu, wiec scenariusze rodem Jurassic Park są mało prawdopodobne. Chciałbym być odporny jak wymienieni w artykule bracia mniejsi, cyjanobakterie, ale mogę tylko powiedzieć - flesh is weak :)

Share this post


Link to post
Share on other sites

Dziś to temat już w znacznym stopniu zapomniany ale rekordem w ożywianiu mikroorganizmów sweg czasu cieszyli się Polacy. Nie było to 100 mln lat lecz ledwie 500 ale za to jakie okoliczności. Z eksplorowanego grobowca  króla Kazimierza Jagiellończyka udało się pozyskać i ożywić wiele szczepów dawnych bakterii i grzybów. Dokonał tego zespół pod kierownictwem prof. Bolesława Smyka z Akademii Rolniczej w Krakowie.

- Liczyłem na wydobycie mikroorganizmów uśpionych w krypcie, a tymczasem - wspomina profesor - mikroby znajdowały się wciąż w stanie skrytobiozy i do życia nie dały się przywrócić mikrobiologowi z drugiej połowy XX wieku. Ale nie chciałem i nie mogłem uznać swej przegranej z drzemiącymi mikrobami. (…) Rozpocząłem więc liczne eksperymenty z aktywacją termiczną, to znaczy zastosowałem "szok termiczny". Używaliśmy pożywek płynnych i stałych - zestalanych za pomocą agar-agaru (czyli substancji stwardniającej pożywki dla mikroorganizmów). Dzięki temu uzyskaliśmy wstępny sukces: nastąpił wzrost pierwszych kolonii bakterii! (...) Udało się wyodrębnić i zidentyfikować bakterie z rodzaju Bacillus, Clostridium, Mycobacterium i inne. Dalej: promieniowce z rodzaju Streptomyces oraz grzyby z rodzaju Alternaria, Chaetomium, Aspergillus, Penicillium, Chrysosporium, Trichoderma, Verticillium i wiele innych nieznanych mi dotąd form

W tamtych czasach:

30 lipca 1973 roku prof. Bolesław Smyk z zespołem podjął mikroskopowe obserwacje wnętrza krypty króla Kazimierza i jej zawartości, jednocześnie pobrał odpowiednie próbki do opisanych badań mikrobiologicznych: mianowicie dwadzieścia cztery z wnętrza krypty, z elementów drewnianych i z trumny króla oraz pięć próbek grobowego powietrza. (...)

***
Światu nie jest znany żaden inny podobny przypadek ożywienia (po tak długim czasie) bakterii związanych ze środowiskiem człowieka. Toteż nasz uczony skromnie powiada, że była to jedynie "kwestia szczęścia".

https://gazetakrakowska.pl/jak-mikrobiolodzy-ozywili-bakterie-z-krolewskiej-krypty-na-wawelu/ar/3446605

Z kości  króla pobrano także przetrwalniki grzyba Aspergillus flavus (kropidlak żółty, złocisty), niebezpiecznego dla człowieka. Jego również udało się ożywić po 480 latach pobytu w kości zmarłego na, o ile dobrze pamiętam, dżume,  władcy. 

W ciągu następnych 10 lat zmarło aż 15 osób, będących w tzw. sile wieku,  związanych z eksploracją tej krypty. Zaczęto mówić o klątwie "wawelskiego Tutanchamona". 

Zbigiew Święch napisał na tej podstawie bestseller końca PRL "Klątwy, mikroby i uczeni". Czy faktycznie otwarcie dosyć szczelnie zamkniętej krypty i to pomimo zastosowanych pewnych środków ostrożności było aż tak zabójcze? Faktem jest, że dla kropidlaka złocistego 500 lat okazało się drzemką.

Edited by venator

Share this post


Link to post
Share on other sites
W dniu 5.03.2021 o 19:32, KopalniaWiedzy.pl napisał:

Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.

Polecam opowiadanie Lema z duszą nieśmiertelną. Nieśmiertelność gdy niczego się nie robi jest prosta i bardzo nudna.

W dniu 5.03.2021 o 19:32, KopalniaWiedzy.pl napisał:

To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów).

Nie ma w tym niczego dziwnego. Bakterie które wytworzyły spory zostały powolutku zjedzone przez te, które tego nie zrobiły.

W dniu 5.03.2021 o 19:32, KopalniaWiedzy.pl napisał:

Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut).

Można by się zastanawiać czy to wynik uszkodzeń czy adaptacji.
Sekwoje żyją 3.5 tyś. lat, po takim czasie są w stanie tworzyć potomstwo. Przez ten czas DNA łapie mutacje bez żadnej selekcji.
Jeśli metabolizm jest szczątkowy w takim środowisku, i jest zredukowane promieniowanie, łatwo uzyskać czynnik 1000 co już daje czas "życia" rzędu milionów lat.

Bakterie mogą mieć sprawniejsze mechanizmy naprawy DNA, co jeszcze dodatkowo może wydłużyć ten czas. 

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Zespół naukowców, inżynierów i marynarzy ze statku badawczego Neil Armstrong należącego do US Navy, którego operatorem jest Woods Hole Oceanographic Institution (WHOI), pobrał 11,5-metrowy rdzeń osadów z najgłębszej części Rowu Portorykańskiego. Osady zostały pozyskane z głębokości ponad 8000 metrów. To rekord po względem głębokości, z jakiej pozyskano rdzeń na Atlantyku, a może i rekord w ogóle.
      Zespołowi naukowemu z WHOI, Uniwersytetu w Monachium i kilku amerykańskich uniwersytetów, przewodzili profesor Steven D'Hondt oraz doktor Robert Pockalny. Celem wyprawy badawczej, która prowadzona była w lutym i marcu bieżącego roku, było lepsze zrozumienie adaptacji mikroorganizmów do życia w morskich osadach na różnych głębokościach. Dlatego też uczeni pobierali próbki zarówno z głębokości 50 metrów, jak i około 8358 metrów. Pobieraliśmy próbki, gdyż chcemy się dowiedzieć, jak mikroorganizmy żyjące na dnie morskim radzą sobie z ciśnieniem. Naszym ostatecznym celem jest zrozumienie interakcji pomiędzy organizmami żyjącymi w ekstremalnych środowiskach a ich otoczeniem, wyjaśnia D'Hondt.
      Pobranie rdzenia z tak dużej głębokości było możliwe dzięki specjalnemu systemowi opracowanemu już w 2007 roku przez Jima Brodę dla statku badawczego Knorr. Po tym, jak Knorr zakończył służbę, jego system został zaadaptowany do krótszego Neila Armstronga.
      Po zakończeniu obecnych badań system do pozyskiwania rdzeni z tak dużej głębokości zostanie przekazany OSU Marine Sediment Sampling Group. To zespół finansowany przez Narodową Fundację Nauki, który pomaga amerykańskiej społeczności akademickiej w pobieraniu próbek osadów morskich. Dzięki temu system będzie dostępny dla całej amerykańskiej floty statków badawczych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy przed 66 milionami lat asteroida zakończyła rządy dinozaurów na Ziemi i zabiła 3/4 gatunków zamieszkujących naszą planetę, wcześni przodkowie naczelnych i torbaczy byli jedynymi nadrzewnymi zwierzętami, które przeżyły zagładę, donoszą autorzy najnowszych badań. Jak przeżyły, skoro to gatunki nadrzewne były najbardziej narażone z powodu globalnej deforestacji wskutek masowych pożarów lasów spowodowanych upadkiem asteroidy?
      W artykule Ecological Selectivity and the Evolution of Mammalian Substrate Preference Across the K-Pg Boundary opublikowanym na łamach Ecology and Evolution, naukowcy z Uniwersytetów Cornell, Yale, Cambridge i City University of New York, wysuwają hipotezę, że nasi przodkowie prowadzili na tyle elastyczny tryb życie, że byli w stanie zejść z drzew, by uchronić się przed wyginięciem. Mogli nie tylko je opuścić, ale i żyć bez nich. Autorzy badań opisali, jak uderzenie meteorytu, które wyznaczyło granicę pomiędzy kredą a trzeciorzędem (granica K-T), wpłynęło na ewolucję ssaków.
      Jednym z możliwych wyjaśnień, w jaki sposób przodkowie naczelnych – mimo że prowadzili nadrzewny tryb życia – przetrwali przez granicę K-T zakłada pewien stopień ich elastyczności, mówi główny autor artykułu, doktorant Jonathan Hughes.
      Pierwsze ssaki pojawiły się około 300 milionów lat temu, a do ich znacznego zróżnicowania ewolucyjnego mogło dojść wraz z rozprzestrzenieniem się roślin kwitnących na 20 milionów lat przed granicą K-T. Gdy asteroida spadła na Ziemię, wyginęło wiele gatunków ssaków. Jednocześnie zaś gatunki, które przeżyły, zróżnicowały się, zajmując nisze ekologiczne uwolnione od dinozaurów i innych gatunków, wyjaśnia Hughes.
      Autorzy badań opublikowali drzewo filogenetyczne ssaków. Pogrupowali przy tym wszystkie żyjące gatunki ssaków na trzy kategorie – nadrzewne, częściowo żyjące na drzewach i nie żyjące na drzewach. Stworzyli też model komputerowy, który rekonstruował ewolucyjną historię ssaków. Model był niezwykle pomocny, gdyż mamy niewiele skamieniałości ssaków z czasów około granicy K-T i trudno jest na ich podstawie wnioskować o preferowanym habitacie gatunków. Dodatkowo naukowcy porównali te skamieniałości z żyjącymi gatunkami ssaków.
      Model komputerowy wykazał, że granicę K-T przetrwały głównie ssaki, które nie żyły na drzewach. Wyjątkami byli przodkowie torbaczy i naczelnych. Bez względu na to, jakie dane załadowano do modelu, za każdym razem model obliczeniowy wykazał, że przed granicą K-T przodkowie naczelnych prowadzili nadrzewny tryb życia. W przypadku torbaczy połowa symulacji wykazała, że ich przodkowie żyli na drzewach.
      Naukowcy sprawdzali też, jak ssaki jako grupa mogły zmieniać się w czasie. Modele wykazały, że czasach bezpośrednio przed i bezpośrednio po granicy K-T dochodzi do znacznej zmiany u ssaków jako grupy. Widoczna jest gwałtowna zmiana. Ssaki jako cała grupa przestają prowadzić nadrzewny tryb życia. Więc to nie jest tak, że nasze modele widziały tylko gatunki nie żyjące na drzewach. Nagle doszło do gwałtownej zmiany. Ssaki porzuciły drzewa, mówi Hughes.
      Widać zatem, że po granicy K-T gwałtownie wzrósł udział ssaków nie korzystających z drzew. Te, które nie były się w stanie bez nich obyć, wyginęły. Przodkowie naczelnych i torbaczy opuścili drzewa, co znacząco wpłynęło na ich ewolucję.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy opisali pierwsze skamieniałości dinozaurów z Irlandii. Dwie skamieniałe kości znalazł nieżyjący już Roger Byrne, nauczyciel i kolekcjoner fosyliów, który przekazał je Ulster Museum. Analizy potwierdziły, że pochodzą z wczesnojurajskich skał w Islandmagee na wschodnim wybrzeżu hrabstwa Antrim.
      To bardzo ważne odkrycie. Takie skamieniałości są skrajnie rzadkie, ponieważ większość irlandzkich skał jest w „złym wieku”, jeśli chodzi o dinozaury; są albo za stare, albo za młode, przez co niemal niemożliwe jest potwierdzenie, że dinozaury występowały na tym terenie. Egzemplarze znalezione przez Rogera Byrne'a mogły zostać wymyte, żywe bądź martwe, do morza. Spadły na jurajskie dno, gdzie zostały pogrzebane i sfosylizowane - opowiada dr Mike Simms, kurator i paleontolog z National Museums Northern Ireland.
      Pierwotnie zakładano, że skamieniałości pochodzą z tego samego zwierzęcia, ale zespół z zaskoczeniem stwierdził, że to nieprawda. Jedna z kości to fragment kości udowej roślinożernego scelidozaura, a druga jest fragmentem kości piszczelowej mięsożernego sarkozaura.
      Robert Smyth i prof. David Martill wykorzystali w swoich analizach fragmentów kości cyfrowe modele 3D w wysokiej rozdzielczości; stworzył je dr Patrick Collins Queen's University Belfast.
      Analizując kształt i wewnętrzną strukturę kości, zdaliśmy sobie sprawę, że należały do 2 różnych zwierząt. Jedna jest bardzo gęsta i mocna, typowa dla roślinożernych dinozaurów pancernych. Druga jest smukła o cienkich ściankach oraz cechach charakterystycznych dla kości jednego tylko podrzędu – szybko poruszających się na dwóch nogach drapieżnych teropodów, mówi Smyth.
      Skamieniałości pochodzą sprzed 200 milionów lat, ważnego okresu, gdy dinozaury zaczęły dominować w ziemskim ekosystemie lądowym.
      Pierwsze irlandzkie dinozaury opisano na łamach Proceedings of the Geologists' Association w artykule First dinosaur remains from Ireland.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na głębokości około 1800 metrów pod lodem Grenlandii naukowcy znaleźli pozostałości po wielkim jeziorze, jego dopływach oraz odpływie. Jezioro uformowało się setki tysięcy lub miliony lat temu, gdy północno-zachodnia Grenlandia była wolna od lodu. Nie wiadomo, kiedy ostatnio znajdowała się w nim woda ciekła woda. Obecnie pozostały osady, które mogą być bezcennym źródłem informacji zarówno dotyczących przeszłości, jak i przyszłości Grenlandii i całej Arktyki. Możemy się bowiem dowiedzieć, jak wyglądają okolice Bieguna Północnego wolne od lodu.
      To może być niezwykle ważne archiwum informacji, znajduje się w miejscu, które jest obecnie całkowicie zamknięte i niedostępne. Próbujemy dowiedzieć się, jak pokrywa lodowa Grenlandii zachowywała się w przeszłości. To bardzo ważne, gdyż dzięki temu możemy zrozumieć, jak będzie zachowywała się w przyszłości, mówi Guy Paxman, badacz z Lamont-Doherty Earth Observatory na Columbia University.
      Paxman i jego zespół odkryli jezioro wykorzystując radar penetrujący lód, w celu opisania topografii lądu znajdującego się poniżej. Okazało się, że 1,8 kilometra pod lodem znajdują się pozostałości po jeziorze o powierzchni 7100 km2. Maksymalna głębokość jeziora wynosiła około 250 metrów. Od północy do jeziora wpadało co najmniej 18 cieków wodnych. Zmapowano też odpływ z jeziora, który prowadził na południe.
      Z wcześniejszych badań wynika, że w ciągu ostatniego miliona lat lód na Grenlandii cofał się i przyrastał. Naukowcy z Lamont-Doherty Earth Observatory zidentyfikowali też obszary, które w ciągu ostatnich 30 milionów lat bywały wolne od lodu.
      Paxman mówi, że głębokość osadów w jeziorze wskazuje, że liczy sobie ono od kilkuset tysięcy do milionów lat. Dokładniej można będzie do określić po wykonaniu odwiertu i pobraniu próbki do badań. Jezioro mogło powstać albo w wyniku ruchów tektonicznych, które doprowadziły do pojawienia się zagłębienia, albo też w wyniku działania cofającego się lodowca.
      Osady mogą zawierać ślady związków chemicznych lub skamieniałości, które powiedzą nam więcej o dawnym klimacie Grenlandii.
      Obecnie nie jest planowane wykonywanie wierceń w celu dostania się do jeziora. Jest to jednak technicznie wykonalne. Już w 2003 roku wwiercono się ponad 3000 metrów w głąb Grenlandii. W 2021 roku ma zaś rozpocząć się projekt GreenDrill, w ramach którego w kilku miejscach na północny Grenlandii zostaną wykonane odwierty w podłożu skalnym. Ich celem jest określenie kiedy i przez jaki czas region ten był wolny od lodu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył wielką bazę danych wszystkich znanych genomów bakteryjnych obecnych w mikrobiomie ludzkich jelit. Baza umożliwia specjalistom badanie związków pomiędzy genami bakterii a proteinami i śledzenie ich wpływu na ludzkie zdrowie.
      Bakterie pokrywają nas z zewnątrz i od wewnątrz. Wytwarzają one proteiny, które wpływają na nasz układ trawienny, nasze zdrowie czy podatność na choroby. Bakterie są tak bardzo rozpowszechnione, że prawdopodobnie mamy na sobie więcej komórek bakterii niż komórek własnego ciała. Zrozumienie wpływu bakterii na organizm człowieka wymaga ich wyizolowania i wyhodowania w laboratorium, a następnie zsekwencjonowania ich DNA. Jednak wiele gatunków bakterii żyje w warunkach, których nie potrafimy odtworzyć w laboratoriach.
      Naukowcy, chcąc zdobyć informacje na temat tych gatunków, posługują się metagenomiką. Pobierają próbkę interesującego ich środowiska, w tym przypadku ludzkiego układu pokarmowego, i sekwencjonują DNA z całej próbki. Następnie za pomocą metod obliczeniowych rekonstruują indywidualne genomy tysięcy gatunków w niej obecnych.
      W ubiegłym roku trzy niezależne zespoły naukowe, w tym nasz, zrekonstruowały tysiące genomów z mikrobiomu jelit. Pojawiło się pytanie, czy zespoły te uzyskały porównywalne wyniki i czy można z nich stworzyć spójną bazę danych, mówi Rob Finn z EMBL's European Bioinformatics Institute.
      Naukowcy porównali więc uzyskane wyniki i stworzyli dwie bazy danych: Unified Human Gastrointestinal Genome i Unified Gastrointestinal Protein. Znajduje się w nich 200 000 genomów i 170 milionów sekwencji protein od ponad 4600 gatunków bakterii znalezionych w ludzkim przewodzie pokarmowym.
      Okazuje się, że mikrobiom jelit jest nie zwykle bogaty i bardzo zróżnicowany. Aż 70% wspomnianych gatunków bakterii nigdy nie zostało wyhodowanych w laboratorium, a ich rola w ludzkim organizmie nie jest znana. Najwięcej znalezionych gatunków należy do rzędu Comentemales, który po raz pierwszy został opisany w 2019 roku.
      Tak olbrzymie zróżnicowanie Comentemales było wielkim zaskoczeniem. To pokazuje, jak mało wiemy o mikrobiomie jelitowym. Mamy nadzieję, że nasze dane pozwolą w nadchodzących latach na uzupełnienie luk w wiedzy, mówi Alexancre Almeida z EMBL-EBI.
      Obie imponujące bazy danych są bezpłatnie dostępne. Ich twórcy uważają, że znacznie się one rozrosną, gdy kolejne dane będą napływały z zespołów naukowych na całym świecie. Prawdopodobnie odkryjemy znacznie więcej nieznanych gatunków bakterii, gdy pojawią się dane ze słabo reprezentowanych obszarów, takich jak Ameryka Południowa, Azja czy Afryka. Wciąż niewiele wiemy o zróżnicowaniu bakterii pomiędzy różnymi ludzkimi populacjami, mówi Almeida.
      Niewykluczone, że w przyszłości katalogi będą zawierały nie tylko informacje o bakteriach żyjących w naszych jelitach, ale również na skórze czy w ustach.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...