Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Czarna dziura burzy współczesne teorie

Recommended Posts

Naukowcy z NASA napotkali na zadziwiająco masywną czarną dziurę. Jej odkrycie każe ponownie zastanowić się nad teoriami dotyczącymi ewolucji gwiazd.

Wspomniana czarna dziura jest częścią galaktyki M33, która znajduje się w odległości 3 milionów lat świetlnych od Ziemi. Dane z Chandra X-ray Observatory i teleskopu Gemini wykazały, iż czarna dziura w układzie binanrym M33 X-7 jest 15,7 razy bardziej masywna niż Słońce. Tym samym jest to najbardziej masywna znana nam czarna dziura.

Odkrycie stawia zupełnie nowe pytania o formowanie się czarnych dziur – mówi Jerome Orosz z San Diego State University, jeden z odkrywców M33 X-7.

Czarna dziura znajduje się w pobliżu towarzyszącej jej gwiazdy, która ma również olbrzymią masę, jest 70 razy cięższa od Słońca. To z kolei najcięższa gwiazda w binarnym systemie, w skład którego wchodzi czarna dziura. Wspomniana gwiazda krąży wokół czarnej dziury przesłaniając ją co trzy i pół doby. To jedyna znana nam czarna dziura w systemie binarnym, która ulega zaćmieniom. Dzięki nim możliwe jest precyzyjne określenie jej masy.

To olbrzymia gwiazda, której towarzyszy olbrzymia czarna dziura. W przyszłości gwiazda prawdopodobnie zmieni się w supernową i z czasem powstanie para czarnych dziur – stwierdził Jeffrey McClintock z Harvard-Smithsonian Center of Astrophysics.

Ewolucja systemu binarnego M33 X-7 jest trudna do przestawienia, gdyż nie zgadza się ze współczesnymi teoriami.

Otóż gwiazda, z której powstała czarna dziura, musiałaby mieć masę większą, niż istniejąca jeszcze gwiazda wchodząca w skład systemu binarnego. To właśnie przez to, iż jej masa była większa, jako pierwsza zmieniła się w czarną dziurę. Tu powstaje jednak pewien problem. Otóż średnica tej gwiazdy byłaby wówczas większa, niż obecna odległość pomiędzy czarną dziurą a istniejącą gwiazdą. Oznaczałoby to, iż gwiazdy miałyby wspólną część zewnętrznego płaszcza. To z kolei powinno spowodować tak znacznie straty w masie takiego systemu, że niemożliwe byłoby powstanie tak masywnej czarnej dziury, jaką odkryto.

Powstanie takiej dziury byłoby możliwe jedynie wówczas, gdyby gwiazda, z której czarna dziura się narodziła, traciła masę 10-krotnie wolniej, niż przewidują współczesne modele astronomiczne.

Jednak takie wolniejsze tracenie masy mogłoby wyjaśniać inne zjawisko, które wcześniej zaobserwowano. Otóż ostatnio astronomowie zauważyli niezwykle jasną supernową SN 2006gy. Gwiazda, która zmieniła się w supernową było 150-krotnie cięższa od Słońca. Oznacza to, że pod koniec swojego życia gwiazdy mogą być znacznie bardziej masywne, niż przewidują współczesne teorie. Innymi słowy, wolniej tracą masę, niż dotychczas sądzono.

Share this post


Link to post
Share on other sites

Jak widać na nie pierwszym już zresztą przykładzie, ślepa wiara w poprawność teorii naukowych nie jest wskazana. Zawsze wypada zachować pewien dystans. Myślę, że zauroczenie możliwościami obliczeniowymi, doprowadza w rezultacie do wyciągania błędnych wniosków. Dziwię się niezmiernie, że nikt nie próbuje najpierw przedstawić konstrukcję, a dopiero później ją opisać, tylko oblicza się "zewnętrzne warstwy" i na tej podstawie wnioskuje o "wewnętrznej" budowie. Moim skromnym zdaniem nie da się "policzyć" Wszechświata. Ostatni post w temacie "podróże w czasie"  jasno wskazuje dlaczego.

Share this post


Link to post
Share on other sites

Przecierz na logike idąc te wszystkie teorie na temat wszystkich tych oddziaływań itp. to tylko PRÓBY poznania wszechświata...... więc tylko ludzie bardzo mało znający sie na temat dzisiejszych możliwości ludzkości i fizyce.... pewnie bedzie patrzył ślepo na temat tych teorii myśląc że to prawda....

 

PS. ja nie chce obalać innych teorii bo sam zbytnio w tym nie siedze... przecierz chodze jeszcze do gima:P

Share this post


Link to post
Share on other sites

Przecierz

Błagam...  >:)

 

Polecam Firefoksa albo Konquerora z pluginem do sprawdzania pisowni... Sorry, że się czepiam, to nic osobistego - ale taki błąd to już językowa perwersja :/

Share this post


Link to post
Share on other sites

pamiętajmy że mówiąc o czarnych dziurach braliśmy pod uwagę masy gwiazd równe 50 masom naszego słońca i niższe. ta jest 70 razy gęstsza i jej obserwacje wcale nie burzą dotychczsowych teorii tylko uzupełniają obecny stan wiedzy dla obiektów znacznie cięższych. a dla niewtajemniczonych: etapy życia gwiazdy przedstawia krzywa energii wiązania.

Share this post


Link to post
Share on other sites

pamiętajmy że mówiąc o czarnych dziurach braliśmy pod uwagę masy gwiazd równe 50 masom naszego słońca i niższe.

 

nie próbuję się w tej chwili czepiać, ale nie bardzo rozumiem to zdanie. czy to oznacza, że nikt nie rozważał cięższych obiektów, bo po przekroczeniu "masy krytycznej" słońce zaczynało się zapadać, tworząc obiekt zwany czarną dziurą?

czyli w rzeczy samej ustalono kolejną nieprzekraczalną granicę? przyznaję, że nie zagłębiałem się w czarne dziury zbyt głęboko ;D

 

pozdrawiam

Share this post


Link to post
Share on other sites

Po prostu współczesne teorie zakładały że takie masywne obiekty nie mogą istnieć bo powinny się zapadać pod wpływem własnej masy obserwacje pokazały że tak nie jest więc mamy problem gdzie jest błąd w naszej aktualnej teorii.To nie jest takie proste że ktoś se to założył i reszta po nim powtarza były zapewne robione wyliczenia i z przyjętych modeli matematycznych tak wyszło .

Share this post


Link to post
Share on other sites

poczytałem sobie w Wikipedii o czarnych dziurach. a swoją drogą to rzeczywiście niezwykły przypadek, ale wytłumaczenie musi istnieć.

pozdrawiam.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronomowie obserwują ostatnie etapy łączenia się trzech supermasywnych czarnych dziur. Krążą one wokół siebie w centrum trzech galaktyk, do połączenia których dochodzi w odległości około miliarda lat świetlnych od Ziemi. Niezwykły taniec czarnych dziur specjaliści zauważyli wewnątrz obiektu SDSS J084905.51+111447.2.
      Obserwowaliśmy parę czarnych dziur, a gdy użyliśmy kolejnych technik [obrazowania rentgenowskiego o wysokiej rozdzielczości przestrzennej, obrazowania w bliskiej podczerwieni oraz spektroskopii optycznej – red.] znaleźliśmy ten niezwykły system, mówi główny autor badań, Ryan Pfeifle z George Mason University. Mamy tutaj najsilniejsze z dostępnych dowodów na istnienie systemu trzech aktywnych supermasywnych czarnych dziur.
      Badania wspomnianego systemu rozpoczęły się od jego obrazowania w świetle widzialnym za pomocą teleskopu Sloan Digital Sky Survey (SDSS) w Nowym Meksyku. Dane udostępniono w społecznościowym projekcie Galaxy Zoo, którego użytkownicy oznaczyli SDSS J084905.51+111447.2 jako miejsce, w którym właśnie dochodzi do łączenia się czarnych dziur. Naukowcy przeanalizowali więc dane zebrana przez teleskop kosmiczny Wide-field Infrared Survey Explorer (WISE). Pracuje on w podczerwieni i jeśli rzeczywiście w galaktyce dochodzi do łączenia się czarnych dziur, to powinien on zaobserwować co najmniej dwa źródła gwałtownego pochłaniania materii. Kolejne obserwacje potwierdziły podejrzenia. Chandra X-ray Observatory wykrył istnienie silnych źródeł promieniowania X, co wskazuje, że czarne dziury pochłaniają tam duże ilości pyłu i gazu. Podobne dowody zdobył Nuclear Spectroscopic Telescope Array (NuSTAR). Kolejne obrazowanie w świetle widzialnym przeprowadzone za pomocą SDSS i Large Binocular Telescope potwierdziły obecność trzech aktywnych czarnych dziur.
      Dzięki użyciu wielu instrumentów opracowaliśmy nową technikę identyfikowania potrójnych układów supermasywnych czarnych dziur. Każdy z tych teleskopów dostarczył nam nieco innych informacji o tym, co się tam dzieje. Mamy nadzieję, że za pomocą tej techniki znajdziemy więcej układów potrójnych, mówi Pfeifle.
      Naukowcy stwierdzili, że odległość pomiędzy każdą z czarnych dziur, a jej sąsiadami wynosi od 10 do 30 tysięcy lat świetlnych. Będzie ona malała, gdyż galaktyki, do których należą te dziury, łączą się, więc i czarne dziury są skazane na połączenie.
      Dzięki wykryciu przez LIGO fal grawitacyjnych pochodzących z łączenia się czarnych dziur, wiemy co nieco o tym, jak przebiega taki proces. Jednak łączenie się układu potrójnego wygląda prawdopodobnie nieco inaczej. Specjaliści podejrzewają, że obecność trzeciej dziury powoduje, iż dwie pierwsze łączą się znacznie szybciej.
      Istnienie układu potrójnego może pozwolić też na wyjaśnienie teoretycznego „problemu ostatniego parseka”. Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale powinny minąć się po orbicie hiperbolicznej. Musi istnieć mechanizm, który spowoduje, że zbliżą się do siebie. Najważniejszym takim mechanizmem jest dynamiczne tarcie. Gdy czarna dziura zbliża się do gwiazdy, gwiazda jest przyspieszana, a czarna dziura spowalniana. Mechanizm ten spowalnia czarne dziury na tyle, że tworzą powiązany ze sobą układ podwójny. Dynamiczne tarcie nadal działa, dziury zbliżają się do siebie na odległość kilku parseków. Jednak proces krążenia czarnych dziur wokół siebie powoduje, że w pobliżu zaczyna brakować materii. W końcu jest jej tak mało, że jej oddziaływanie nie wystarczy, by dziury się połączyły.
      Ostatecznie do połączenia się czarnych dziur mogłyby doprowadzić fale grawitacyjne, ale ich oddziaływanie ma znaczenie dopiero, gdy dziury zbliżą się do siebie na odległość 0,01–0,001 parseka. Wiemy jednak, że czarne dziury się łączą, pozostaje więc pytanie, co rozwiązuje problem ostatniego parseka, czyli co powoduje, że zbliżą się do siebie na tyle, iż utworzą jedną czarną dziurę. Obecność trzeciej czarnej dziury wyjaśniałaby, jaka siła powoduje, że czarne dziury się łączą.
      Nie można też wykluczyć, że w układach potrójnych dochodzi nie tylko do połączenia się dwóch czarnych dziur, ale i do wyrzucenia trzeciej z nich w przestrzeń kosmiczną.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie pokazali  pierwsze w historii zdjęcie czarnej dziury. Po dekadzie teoretycznych rozważań na temat możliwości obrazowania obiektu, z którego nie wydobywa się światło, udało się teorię przekuć w praktykę. Dzięki Event Horizon Telescope (EHT), o którego uruchomieniu informowaliśmy przed dwoma laty, udało się osiągnąć kamień milowy w astronomii.
      EHT, w skład którego wchodzą teleskopy na Hawajach, w Chile, Meksyku, Antarktydzie, Francji i Hiszpanii od początku swojego powstania obserwował Saggitariusa A*, czyli czarną dziurę w Drodze Mlecznej, oraz supermasywną czarną dziurę w galaktyce Messier 87. I to właśnie M87 jest pierwszą czarną dziurą, którą zobrazowała ludzkość.
      EHT zbiera tak dużo danych, że jej przesłanie za pomocą internetu nie jest możliwe. Informacje są składowane lokalnie, a później przewożone do Instytutu Maksa Plancka w Niemczech i do Haystack Observatory w USA, gdzie są przetwarzane. Dane, dzięki którym zobaczyliśmy czarną dziurę, zostały zebrane pomiędzy 5 a 14 kwietnia 2017 roku. Dopiero po dwóch latach pracy udało się je złożyć razem i pokazać, jak wygląda M87.
      Czarne dziury są tak masywne i gęste, że nie może z nich uciec nawet światło. Są też zwane osobliwościami, gdyż nie zajmują przestrzeni. Jednak są otoczone horyzontem zdarzeń. I wszystko, co przekroczy granicę horyzontu zdarzeń, wpada do czarnej dziury bez możliwości powrotu. Z czarnej dziury nie wydobywa się więc światło, które można by uchwycić na fotografii. Jest ona jednak obiektem tak gęstym i masywnym, że oddziałuje na swoje otoczenie, zakrzywiając czasoprzestrzeń i podgrzewając do ekstremalnych temperatur otaczającą ją materię.
      Jeśli czarną dziurę zanurzymy w czymś jasnym, takim jak dysk świecącego gazu, to powstanie ciemny obszar podobny do cienia. Coś, co przewidziane jest ogólną teorią względności Einsteina, a czego nigdy wcześniej nie widzieliśmy, wyjaśnia przewodniczący Rady Naukowej EHT Heino Falcke z Holandii. Ten cień, powodowany przez grawitacyjne zaginanie i przechwytywanie światła przez horyzont zdarzeń, zdradza nam wiele informacji na temat czarnej dziury i pozwolił nam na zmierzenie maszy M87.
      Gdy już upewniliśmy się, że mamy na obrazie cień, mogliśmy go porównać z naszymi modelami komputerowymi, które uwzględniają fizykę zagiętej przestrzeni, supergorącą materię i silne pola magnetyczne. Wiele z tego, co zaobserwowaliśmy dzięki EHT zadziwiająco dobrze pasuje do modeli teoretycznych. Dzięki temu jesteśmy pewni, że dobrze interpretujemy to, co widzimy i dobrze obliczyliśmy masę czarnej dziury, stwierdza Paul T.P. Ho, dyrktor Obserwatorium Wschodnioazjatyckiego i członek Rady EHT.
      Event Horizon Telescope zdobył petabajty danych, które zostały przeanalizowane przez wyspecjalizowane superkomputery w Niemczech i USA. Osiągnęliśmy coś, o czym generację temu nie mogliśmy nawet marzyć. Przełom technologiczny, współpraca najlepszych światowych radioteleskopów oraz innowacyjne algorytmy pozwoliły nam badanie czarnych dziur i horyzontów zdarzeń w zupełnie nowy sposób, podsumowuje dyrektor EHT, Sheperd S. Doeleman z Harvard-Smithsonian Center for Astrophysics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie ze szwedzkiego Uniwersytetu w Lund znaleźli możliwe wytłumaczenie tajemniczego zjawiska, odkrytego w ubiegłym roku w pobliżu centrum naszej galaktyki. Wówczas zauważono, że w pobliżu centralnej czarnej dziury, Sagittariusa A*, znajdują się duże ilości skandu. Szwedzi twierdzą, że to iluzja optyczna.
      W ubiegłym roku pojawiła się praca naukowa, której naukowcy donosili, że w czerwonych olbrzymach, oddalonych od czarnej dziury nie więcej niż o 3 lata świetlne, znajduje się duża ilość trzech różnych pierwiastków.
      Teraz naukowcy z Uniwersytetu w Lund we współpracy z kolegami z Uniwersytetu Kalifornijskiego z Los Angeles, twierdzą, że zauważone widmo spektroskopowe skandu, wanadu i itru, to złudzenie optyczne. Te czerwone olbrzymy zużyły większość swojego wodoru i ich temperatura jest o połowę niższa niż temperatura Słońca, mówi główny autor badań, doktorant Brian Thorsbro. Wedle najnowszych badań, niska temperatura gwiazd przyczyniła się do powstania iluzji optycznej. Elektrony wspomnianych pierwiastków zachowują się inaczej w niższych temperaturach niż w wyższych. Podczas badania widma spektroskopowego może to wprowadzać w błąd. Do takich wniosków doszli astronomowie i fizycy atomowi.
      Thorsbro i jego zespół wykorzystali podczas swoich badań m.in. Teleskopy Kecka na Hawajach. Wykonali szczegółowe mapowanie centralnych obszarów Galaktyki, skupiając się na znajdujących się tam gwiazdach i badając, jakie pierwiastki zawierają. To światowej klasy badania w tym sensie, że wykonaliśmy szczegółowe mapowanie składu gwiazd wielkiej centralnej gromady otaczającej czarną dziurę, wyjaśnia Nnils Ryde z Uniwersytetu w Lund.
      Na podstawie badań w bliskiej podczerwieni, z wykorzystaniem technologii, która jest dostępna dopiero od niedawna, uczeni doszli do wniosku, że wcześniejsze doniesienia to nie naukowa sensacja, a złudzenie optyczne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy pracujący pod kierunkiem specjalistów z Columbia University odkryli, że wokół Saggitariusa A* (Sgr A*), masywnej czarnej dziury w centrum Drogi Mlecznej, krąży 12 mniejszych czarnych dziur. To pierwszy dowód na prawdziwość pochodzącej sprzed dziesięcioleci hipotezy dotyczącej budowy centrum naszej galaktyki.
      Wszystko czego chcielibyśmy dowiedzieć się o interakcji pomiędzy wielkimi czarnymi dziurami, a małymi czarnymi dziurami, możemy dowiedzieć się badając ten obszar, mówi główny autor badań, astrofizyk Chick Hailey. Droga Mleczna to jedyna galaktyka, gdzie możemy badać wpływ supermasywnych czarnych dziur na małe czarne dziury. W innych galaktykach nie możemy dostrzec takich interakcji.
      Naukowcy od ponad 20 lat szukają dowodów na wsparcie hipotezy o tysiącach czarnych dziur krążących wokół supermasywnych czarnych dziur w centrach dużych galaktyk. W całej naszej galaktyce, która liczy sobie 100 000 lat świetlnych średnicy, istnieje zaledwie około 50 czarnych dziur. A w tym regionie, o szerokości 6 lat świetlnych, może być ich 10 do 20 tysięcy i nikt nie był w stanie ich znaleźć. Brakowało więc wiarygodnych dowodów na ich istnienie, dodaje Hailey.
      Sgr A* jest otoczona pyłem i gazem, które tworzą idealne środowisko powstawania masywnych gwiazd, które po śmierci stają się czarnymi dziurami. Ponadto supermasywny Sgr A* może przyciągać czarne dziury, które powstały poza tym pyłem i gazem.
      Astronomowie sądzą, że większość krążących wokół Saggitariusa A* czarnych dziur to samotne obiekty. Jednak niektóre z nich mogły przechwycić pobliską gwiazdę i stworzyć układ podwójny. Zagęszczenie samotnych czarnych dziur i układów podwójnych powinno wzrastać w miarę zbliżania się do Sgr A*.
      W przeszłości poszukiwano dowodów na istnienie układów podwójnych czarna dziura - gwiazda próbując zanotować rozbłysk promieniowania rentgenowskiego, do którego dochodzi podczas łączenia się czarnej dziury z gwiazdą. To oczywisty sposób na poszukiwanie czarnych dziur, jednak centrum naszej galaktyki jest tak bardzo od nas oddalone, że odpowiednio silny rozbłysk zdarza się raz na 100-1000 lat, mówi Hailey. Jego zespół zdał sobie sprawę, że żeby wykryć wspomniane układy podwójne trzeba szukać słabszego ale stabilnego promieniowania rentgenowskiego, które pojawia się po wstępnym rozbłysku.
      Izolowane samotne czarne dziury są po prostu czarne. Nie wysyłają żadnych sygnałów. Więc poszukiwanie w centrum Galaktyki takich dziur nie jest zbyt rozsądne. Gdy jednak czarna dziura tworzy układ podwójny z gwiazdą, ma miejsce stała emisja promieniowania rentgenowskiego, którą można wykryć. Jeśli znajdziemy czarną dziurę powiązaną z gwiazdą o małej masie i wiemy, jaki odsetek czarnych dziur wiąże się z takimi gwiazdami, możemy obliczyć populację izolowanych czarnych dziur, wyjaśnia Hailey.
      Uczeni przejrzeli historyczne dane z Chandra X-ray Observatory i w promieniu 3 lat świetlnych od Sgr A* znaleźli 12 układów czarna dziura-gwiazda. Po analizie właściwości i rozłożenie w przestrzeni tych układów podwójnych i ekstrapolacji swoich wyników na całe otoczenie Sgr A* stwierdzili, że musi się tam znajdować 300-500 układów podwójnych i około 10 000 izolowanych czarnych dziur.
      Odkrycie ma bardzo duże znaczenie np. dla badań nad falami grawitacyjnymi. Znając liczbę czarnych dziur w centrum galaktyki można będzie obliczyć, jak wiele fal grawitacyjnych będzie emitowane.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy uważają, że wiele planet może doświadczać tak olbrzymiego oddziaływania sił pływowych, że cała znajdująca się na nich woda może zostać odparowana. Odkrycie to może pomóc w poszukiwaniu planet, na których istnieje życie. Niewykluczone bowiem, że wiele z nich, mimo iż znajduje się w strefie zamieszkania, zostało pozbawione wody np. przez swoją gwiazdę.
      Siły pływowe pojawiają się wówczas, gdy na znacznej długości obiektu dochodzi do zmiany grawitacji. Na Ziemię oddziałują w ten sposób Słońce czy Księżyc. Ta strona naszej planety, która jest bliżej oddziałującego nań ciała, jest silniej przyciągana niż strona bardziej odległa. Widocznym objawem istnienia sił pływowych są na Ziemi pływy morskie.
      Jednak siły, których doświadcza Ziemia są niczym w porównaniu z tymi, jakie mają miejsce w innych miejscach kosmosu. Na przykład siły Jowisza oddziałujące na Europę są około 1000-krotnie większe niż wpływ Księżyca na Ziemię. To  powoduje, że Europa wygina się i rozgrzewa.
      Odległość od gwiazdy macierzystej to bardzo ważny wskaźnik możliwości istnienia życia na planecie. Jeśli jest ona zbyt mała, powierzchnia planety jest tak gorąca, że nie może na niej istnieć woda w stanie ciekłym. Gdy planeta jest daleko od swojej gwiazdy, istniejąca nań woda zamarza.
      Uczeni od dawna przypuszczają, że to niewielka odległość Wenus od Słońca powoduje, że planeta ta jest sucha. Cała jej woda wyparowała. Jednak teraz naukowcy stwierdzili, że istotna jest nie tylko temperatura. Zbyt potężne siły pływowe mogą pozbawić planetę całej wody rozgrzewając jej powierzchnię.
      To znacząco zmienia koncepcję strefy zamieszkania. Doszliśmy do wniosku, że jej szerokość należy skorygować o jeszcze jeden czynnik niż tylko ciepło docierające z gwiazdy macierzystej - mówi Rory Barnes, astrobiolog z University of Washington.
      Jego zdaniem takim systemom planetarnym jak nasz nie grozi pozbawienie wody przez gwiazdę, gdyż siły pływowe gwałtownie zmniejszają się wraz z odległością od gwiazdy. Planeta musiałaby znajdować się tak blisko niej, że i tak straciłaby wodę wskutek gorąca. Jednak taki scenariusz jest prawdopodobny w przypadku systemu planetarnych powstałych wokół białych czy brązowych karłów.
      Tego typu systemy są szczególnie interesujące dla astronomów, gdyż planety mogą znajdować się bardzo blisko gwiazd, a mimo to nie panuje na nich zbyt wysoka temperatura. Ponadto, z powodu swojej niewielkiej odległości, czas ich obiegu wokół gwiazdy jest krótki, co ułatwia odkrycie takich planet. Rory Barnes uważa, że takie planety mogą być bardzo mylące. Najpierw znajdują się one na tyle blisko swojej gwiazdy macierzyste, że siły pływowe pozbawiają je wody. Później mogą zmienić orbitę na dalszą, przez co nawet nie będziemy przypuszczać, że mogą na nie oddziaływać duże siły pływowe, a jednocześnie orbita ta będzie znajdowała się w strefie zamieszkania. Gdy znajdziemy kandydatkę na zamieszkaną planetę, trzeba brać pod uwagę siły pływowe. Szkoda marnować czasu na badanie wysuszonych planet - mówi Barnes.
×
×
  • Create New...