Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Komórki macierzyste z jąder
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Zespół profesora Jakoba Hanny z Instytutu Weizmanna stworzył z komórek macierzystych kompletne modele ludzkich embrionów i prowadził ich rozwój poza macicą przez 8 dni. Embriony posiadały wszystkie struktury charakterystyczne dla naturalnie powstałych 14-dniowych embrionów, w tym łożysko, pęcherzyk żółtkowy, kosmówkę i inne tkanki potrzebne do odpowiedniego wzrostu. To znaczące osiągnięcie, gdyż to, co udawało się dotychczas uzyskać z ludzkich komórek macierzystych nie mogło być uznawane za prawdziwe modeli embrionów, gdyż nie posiadało niemal żadnych struktur niezbędnych do rozwoju embrionalnego.
Modele embrionu uzyskane przez zespół Hanny posłużą nie tylko do badań nad słabo poznanym najwcześniejszym etapem rozwoju człowieka. A to ten etap jest w wielu momentach kluczowy. W siódmym dniu po zapłodnieniu rozwijający się zarodek zagnieżdża się w macicy, a już 3-4 tygodnie później wykształcają się zawiązki wszystkich narządów. Wszystko rozgrywa się w pierwszym miesiącu, przez pozostałych osiem miesięcy płód głównie rośnie, mówi Hanna. Jednak ten pierwszy miesiąc to dla nas w dużej mierze tajemnica. Nasze embriony stworzone z komórek macierzystych pozwolą na badanie tego okresu w sposób łatwy i etyczny. Rozwój modelowego embrionu bardzo przypomina rozwój prawdziwego ludzkiego embrionu, szczególnie rozwój różnych jest struktur, dodaje uczony.
Zespół Hanny korzystał z doświadczeń zdobytych podczas prac na mysim embrionem w komórek macierzystych. W przypadku ludzkiego embrionu naukowcy również nie skorzystali ani z zapłodnionego jaja, ani z macicy. Użyli pluripotencjalnych komórek macierzystych, które mogą różnicować się w wiele – ale nie wszystkie – typów komórek. Część z wykorzystanych komórek pobrali ze skóry dorosłego człowieka, część pochodzi zaś z linii komórkowych od lat hodowanych w laboratorium.
Następnie wykorzystali opracowaną przez siebie metodę reprogramowania zmieniając je w komórki na wcześniejszym etapie życia, które mogą różnicować się w dowolny typ komórek. Ten etap odpowiada 7-dniowemu zarodkowi, takiemu, który właśnie zagnieżdża się w macicy.
Naukowcy podzielili pozyskane przez siebie komórki na trzy grupy. Ta, która miała rozwinąć się w embrion pozostała bez zmian. Pozostałe dwie grupy poddano działaniu odpowiednich środków chemicznych – bez modyfikacji genetycznych – po to, by rozwinęły się tkanki potrzebne do utrzymania embrionu przy życiu – łożysko, pęcherzyk żółtkowy i kosmówkę. Po wymieszaniu komórek w odpowiednim zoptymalizowanym środowisku, doszło do spontanicznej samoorganizacji i około 1% z nich utworzył embrion. Embrion z definicji sam się rozwija. Nie trzeba mu mówić, co ma robić. Wystarczy uwolnić zakodowany wewnątrz potencjał. Kluczowym elementem jest wymieszanie odpowiednich komórek na samym początku. Gdy się to zrobi, embrion samodzielnie zaczyna się rozwijać, mówi Hanna. Po uzyskaniu embrionu naukowcy przez 8 dni rozwijali go poza macicą, uzyskując etap rozwoju odpowiadający 14-dniowemu zarodkowi.
Gdy naukowcy porównali wewnętrzną organizację swojego modelu z ilustracjami i wynikami badań anatomicznych dostępnych w atlasach z lat 60., zauważyli olbrzymie podobieństwa. Ich model zawierał każdą znaną strukturę, znajdowała się ona w odpowiednim miejscu, miała prawidłowe rozmiary i kształt. Embrion wydzielał nawet odpowiednie hormony. Gdy naukowcy je pobrali i umieścili na komercyjnym teście ciążowym, uzyskali wynik dodatni.
Wiele wad rozwojowych pojawia się w pierwszych tygodniach życia zarodka, gdy kobieta jeszcze nie wie, że jest w ciąży. Stworzony w Izraelu model pozwoli na poszukiwanie zarówno sygnałów świadczących o prawidłowym, jak i nieprawidłowym rozwoju. Już teraz naukowcy zauważyli, że jeśli do 10 dnia po zapłodnieniu embrion nie zostanie otoczony komórkami tworzącymi łożysko, jego struktury zewnętrzne, jak pęcherzyk żółtkowy, nie rozwijają się prawidłowo.
Naukowcy poinformowali też, że na etapie odpowiadającym 7. dniu po zapłodnieniu model składał się ze 120 komórek, a jego średnica wynosiła 0,1 mm. Na etapie 14. dnia był on złożony z około 2500 komórek i mierzył 0,5 mm.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Chin, Kanady i Wielkiej Brytanii poinformowali o znalezieniu jednego z najlepiej zachowanych embrionów dinozaurów. „Dziecko Yingliang” pozwala lepiej zbadać związki pomiędzy dinozaurami a ptakami. Embrion znajduje się w pozycji charakterystycznej dla współczesnych ptaków na krótko przed wykluciem się. Embrion zidentyfikowano jako należący do grupy owiraptorozaurów (jaszczur, złodziej jaj), terapodów blisko spokrewnionych z ptakami.
Badający skamieniałość naukowcy zauważyli, że głowa embrionu znajduje się poniżej tułowia, kończyny są po obu jej stronach, a grzbiet jest zawinięty w kierunku szerszego końca jaja. Nigdy wcześniej nie widziano takiej pozycji u żadnego z embrionów ginozaurów. Jest ona jednak powszechna wśród współczesnych ptaków. Odkrycie oznacza, że początki takiej pozycji pojawiły się już u terapodów nie będących ptakami.
Embrion ma około 27 centymetrów długości i znajduje się wewnątrz 17-centymetrowego jaja. Embriony dinozaurów to jedne z najrzadziej spotykanych skamieniałości. Większość z nich jest niekompletnych z przemieszczonymi kośćmi. Jesteśmy niezwykle podekscytowani znalezieniem „Dziecka Yingliang”. Jest ono świetnie zachowane i pozwoli nam poznać wiele tajemnic dotyczących rozwoju i reprodukcji dinozaurów, mówi główny autor artykułu, doktor Fion Waisum Ma z University of Birmingham. Uczony dodaje, że podobna pozycja „Dziecka Yingliang” i współczesnych ptasich embrionów sugeruje podobne zachowanie przed wykluciem się z jaja.
„Dziecko Yingliang” liczy sobie 72–66 milionów lat. Zostało zidentyfikowane jako owiraptorozaur na podstawie czaszki. Grupa ta obejmowała upierzone terapody zamieszkujące tereny dzisiejszej Azji i Ameryki Północnej. Skamieniałość znaleziono w prefekturze Ganzhou na południu Chin w skałach z późnej kredy.
Autorzy badań porównali pozycję embrionu owiraptorozaura z pozycjami embrionów innych terapodów oraz ptaków i na tej podstawie zaproponowali hipotezę, zgodnie z którą zachowanie embrionu przed wykluciem, w wyniku którego przyjął on taką pozycję nie jest unikatowe dla ptaków, ale pojawiło się najpierw wśród terapodów przed dziesiątkami, a może nawet setkami milionów lat.
Interesująca jest też sama historia embrionu. Został on kupiony przez dyrektora firmy Yingliang Group, pana Lianga Liu, około roku 2000 jako przedmiot, który mógł być jajem dinozaura. Gdy po roku 2010 budowano Yingliang Stone Nature History Museum, pracownicy muzealni wybierający przedmioty na ekspozycję, zidentyfikowali go jako jajo dinozaura. Dopiero wówczas rozpoczęto badania i trafiono na sensacyjną skamieniałość.
Ten embrion wewnątrz jaja to jedna z najpiękniejszych skamieniałości jakie kiedykolwiek widziałem. Mały dinozaur wygląda jak mały ptak przed wykluciem, zwinięty w jaju. To kolejny dowód wskazujący, że liczne cechy współczesnych ptaków pojawiły się u dinozaurów, mówi profesor Steve Brusatte z University of Edinburgh.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy od dziesięcioleci spierają się o to, czy dochodzi do wymiany materiału pomiędzy jądrem Ziemi, a warstwami położonymi powyżej. Jądro jest niezwykle trudno badać, częściowo dlatego, że rozpoczyna się na głębokości 2900 kilometrów pod powierzchnią planety.
Profesor Hanika Rizo z Carleton University, wykładowca na Queensland University of Technology David Murphy oraz profesor Denis Andrault z Universite Clermont Auvergne informują, że znaleźli dowody na wymianę materiału pomiędzy jądrem, a pozostałą częścią planety.
Jądro wytwarza pole magnetyczne i chroni Ziemię przed szkodliwym promieniowaniem kosmicznym, umożliwiając istnienie życia. Jest najcieplejszym miejscem Ziemi, w którym temperatury przekraczają 5000 stopni Celsjusza. Prawdopodobnie odpowiada ono za 50% aktywności wulkanicznej naszej planety.
Aktywność wulkaniczna to główny mechanizm, za pomocą którego Ziemia sie chłodzi. Zdaniem Rizo, Murphy'ego i Andraulta niektóre procesy wulkaniczne, np. te na Hawajach czy na Islandii, mogą brać swój początek w jądrze i transportować ciepło bezpośrednio z wnętrza planety. Twierdzą oni, że znaleźli dowód na to, iż do płaszcza ziemskiego trafia materiał z jądra.
Odkrycia dokonano badając niewielkie zmiany w stosunku izotopów wolframu. Wiadomo, że jądro jest zbudowane głównie z żelaza i aluminium oraz z niewielkich ilości wolframu, platyny i złota rozpuszczonych w żelazno-aluminiowej mieszaninie. Wolfram ma wiele izotopów, w tym wolfram-182 i wolfram-184. Wiadomo też, że stosunek wolframu-182 do wolframu-184 jest w płaszczu znacznie wyższy niż w jądrze. Dzieje się tak dlatego, że hafn, który nie występuje w jądrze, posiada izotop hafn-182. Izotop ten występował w przeszłości w płaszczu, jednak obecnie już go nie ma, gdyż rozpadł się do wolframu-182. Właśnie dlatego stosunek wolframu-182 do wolframu-184 jest w płaszczu wyższy niż w jądrze.
Uczeni postanowili więc zbadać stosunek izotopów wolframu, by przekonać się, czy na powierzchni występują skały zawierające taki skład wolframu, jaki odpowiada jądru. Problem w tym, że istnieje mniej niż 5 laboratoriów zdolnych do badania wolframu w ilościach nie przekraczających kilkudziesięciu części na miliard.
Badania udało się jednak przeprowadzić. Wykazały one, że z czasem w płaszczu Ziemi doszło do znaczącej zmiany stosunku 182W/184W. W najstarszych skałach płaszcza stosunek ten jest znacznie wyższy niż w skałach młodych. Zespół badaczy uważa, że zmiana ta wskazuje, iż materiał z jądra przez długi czas trafiał do płaszcza ziemskiego. Co interesujące, na przestrzeni około 1,8 miliarda lat nie zauważono zmiany stosunku izotopów. To oznacza, że pomiędzy 4,3 a 2,7 miliarda lat temu do górnych warstw płaszcza materiał z jądra nie trafiał w ogóle lub trafiało go niewiele. Jednak 2,5 miliarda temu doszło do znaczącej zmiany stosunków izotopu wolframu w płaszczu. Uczeni uważają, że ma to związek z tektoniką płyt pod koniec archaiku.
Jeśli materiał z jądra trafia do na powierzchnię, to oznacza, że materiał z powierzchni Ziemi musi trafiać głęboko do płaszcza. Proces subdukcji zabiera bogaty w tlen materiał w głąb planety. Eksperymenty zaś wykazały, że zwiększenie koncentracji tlenu na granicy płaszcza i jądra może spowodować, że wolfram oddzieli się od jądra i powędruje do płaszcza. Alternatywnie, proces zestalania wewnętrznej części jądro może prowadzić do zwiększenia koncentracji tlenu w części zewnętrznej. Jeśli uda się rozstrzygnąć, który z procesów zachodzi, będziemy mogli więcej powiedzieć o samym jądrze Ziemi.
Jądro było w przeszłości całkowicie płynne. Z czasem stygło i jego wewnętrzna część skrystalizowała, stając się ciałem stałym. To właśnie obrót tej części jądra tworzy pole magnetyczne chroniące Ziemię przed promieniowaniem kosmicznym. Naukowcy chcieliby wiedzieć, jak przebiegał proces krystalizacji o określić jego ramy czasowe.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy stworzyli pierwsze na świecie małpy-chimery. Hex, Roku i Chimero są ponoć zdrowe i normalnie zbudowane, a ich ciała składają się z komórek pochodzących z 6 różnych genomów. Autorzy raportu z pisma Cell podkreślają, że udało im się poczynić olbrzymie postępy, ponieważ dotąd chimerami były głównie myszy.
Shoukhrat Mitalipov z Oregon Health & Science University (OHSU) zebrał w jednym miejscu komórki pochodzące z kilku embrionów rezusów i zaimplantował je samicom. Kluczem do sukcesu było zmieszanie komórek na bardzo wczesnym etapie rozwoju (z 2-4-komórkowych blastocyst), bo są one totipotencjalne, tzn. mogą się różnicować w każdy typ komórkowy organizmu.
Komórki nigdy się nie spajają, ale pozostają w pobliżu i współpracują, by utworzyć tkanki oraz narządy. Stwarza to niemal nieograniczone możliwości naukowe - podkreśla Mitalipov.
Pierwsze próby amerykańskiego zespołu z wszczepianiem do embrionów małp hodowlanych zarodkowych komórek macierzystych, a więc zabieg wykorzystywany w przypadku myszy, zakończyły się niepowodzeniem. Uzyskiwano bowiem organizmy, w których występowały wyłącznie komórki zarodka macierzystego.
Porażka nie zniechęciła biologów, dlatego zamiast korzystać z zamrożonych komórek, zdecydowali się na pobieranie ich ze środka masy embrionu i wstrzykiwanie bezpośrednio do drugiego zarodka. W rezultacie nie uzyskano pojedynczej chimery, ale bliźnięta. Kiedy Amerykanie wpadli wreszcie na trop skuteczniej metody, pobierali pojedyncze komórki blastocysty, a następnie mieszali komórki pochodzące od 3-6 dawców, uzyskując w ten sposób 29 nowych blastocyst. Wybrali 14 najsilniejszych i wszczepili je 5 surogatkom. U wszystkich implantacja się powiodła. U 3 samic ciążę zakończono przed terminem i badano płody-chimery, później w wyniku cesarskiego cięcia urodziły się bliźnięta Roku i Hex oraz "samotny" Chimero. Wszystkie matki odrzuciły dzieci. Naukowcy spekulują, że powodem był nienaturalny dla nich sposób urodzenia młodych. Na razie nie wiadomo, czy Roku, Xex i Chimero mogą mieć dzieci.
Akademicy z OHSU sugerują, że embrionalne komórki macierzyste naczelnych, które są niekiedy w laboratorium od przeszło 20 lat, nie mają tych samych możliwości, co komórki pobrane z żywych embrionów. Musimy wrócić do podstaw i badać nie tylko hodowle embrionalnych komórek macierzystych, ale także komórki macierzyste w embrionach. Nie możemy modelować wszystkiego na myszach. Jeśli chcemy przejść z terapiami z komórek macierzystych z laboratoriów do klinik i od myszy do ludzi, musimy zrozumieć, co komórki naczelnych mogą, a czego nie.
-
przez KopalniaWiedzy.pl
Otyłe samce myszy mają potomstwo z zaburzeniami metabolicznymi, ponieważ wysokotłuszczowa dieta wywołuje zmiany epigenetyczne w plemnikach. Wcześniej sądzono, że tego typu zjawiska nie mają wpływu na młode, bo przed i po zapłodnieniu dochodzi do "przepakowania" zawartości jądra komórkowego.
Maria Ohlsson Teague i Michelle Lane z Uniwersytetu w Adelajdzie w Australii wykazały, że myszy, którym podawano niezdrową karmę, miały potomstwo podatne na insulinooporność. Oznacza to, że w pewnych regionach plemników zmiany epigenetyczne najwyraźniej się utrzymują.
W ramach pogłębionych badań zidentyfikowano 21 miRNA (jednoniciowych cząsteczek RNA regulujących włączanie i wyłączanie genów), których ekspresja była inna w plemnikach gryzoni jedzących wysokotłuszczową i zdrową karmę. Panie posłużyły się bazą danych znanych miRNA i dzięki temu opisały możliwy wpływ zaobserwowanych zmian. Na samym początku uplasowały się rozwój embrionu i plemników oraz zaburzenia metaboliczne.
Teague uważa, że duża ilość tłuszczu wokół jąder zmienia warunki i sprzyja zmianom epigenetycznym.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.