Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Odległe splątane atomy
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Dwie amerykańskie grupy badawcze stworzyły – niezależnie od siebie – pierwsze kwantowe procesory, w których rolę kubitów odgrywają atomy. To potencjalnie przełomowe wydarzenie, gdyż oparte na atomach komputery kwantowe mogą być łatwiej skalowalne niż dominujące obecnie urządzenia, w których kubitami są uwięzione jony lub nadprzewodzące obwody.
W 2020 roku firma Heoneywell pochwaliła się, że jej komputer na uwięzionych jonach osiągnął największą wartość „kwantowej objętości”. Tego typu maszyny, mają tę zaletę, że jony w próżni jest dość łatwo odizolować od zakłóceń termicznych, a poszczególne jony w chmurze są nieodróżnialne od siebie. Problemem jest jednak fakt, że jony wchodzą w silne interakcje, a do manipulowania nimi trzeba używać pól elektrycznych, co nie jest łatwym zadaniem.
Z drugiej zaś strony mamy kwantowe maszyny wykorzystujące obwody nadprzewodzące. Za najpotężniejszy obecnie procesor kwantowy z takimi obwodami uznaje się 127–kubitowy Eagle IBM-a. Jednak wraz ze zwiększaniem liczby kubitów, urządzenia tego typu napotykają coraz więcej problemów. Każdy z kubitów musi być w nich wytwarzany indywidualnie, co praktycznie uniemożliwia wytwarzanie identycznych kopii, a to z kolei – wraz z każdym dodanym kubitem – zmniejsza prawdopodobieństwo, że wynik obliczeń prowadzonych za pomocą takiego procesora będzie prawidłowy. Jakby jeszcze tego było mało, każdy z obwodów musi być schłodzony do niezwykle niskiej temperatury.
Już przed sześcioma laty zespoły z USA i Francji wykazały, że możliwe jest przechowywanie kwantowej informacji w atomach, którymi manipulowano za pomocą szczypiec optycznych. Od tamtego czasu Amerykanie rozwinęli swój pomysł i stworzyli 256-bitowy komputer kwantowy bazujący na tej platformie. Jednak nikt dotychczas nie zbudował pełnego obwodu kwantowego na atomach.
Teraz dwa niezależne zespoły zaprezentowały procesory bazujące na takich atomach. Na czele grupy z Uniwersytetu Harvarda i MTI stoi Mikhail Lukin, który w 2016 roku opracował ten oryginalny pomysł. Zespołem z University of Wisonsin-Madison, w pracach którego biorą też udział specjaliści z firm ColdQuant i Riverlane, kieruje zaś Mark Saffman. Zespół Lukina wykorzystał atomy rubidu, zespół Saffmana użył zaś cezu.
Jeśli mamy obok siebie dwa atomy w stanie nadsubtelnym, to nie wchodzą one w interakcje. Jeśli więc chcemy je splątać, jednocześnie wzbudzamy je do stanu Rydberga. W stanie Rydberga wchodzą one w silne interakcje, a to pozwala nam je szybko splątać. Później możemy z powrotem wprowadzić je w stan nadsubtelny, gdzie można nimi manipulować za pomocą szczypiec optycznych, wyjaśnia Dolev Bluvstein z Uniwersytetu Harvarda.
Grupa z Harvarda i MIT wykorzystała stan nadsubtelny do fizycznego oddzielenia splątanych atomów bez spowodowania dekoherencji, czyli utraty kwantowej informacji. Gdy każdy z atomów został przemieszczony na miejsce docelowe został za pomocą lasera splątany z pobliskim atomem. W ten sposób naukowcy byli w stanie przeprowadzać nielokalne operacje bez potrzeby ustanawiania specjalnego fotonicznego lub atomowego łącza do przemieszczania splątania w obwodzie.
W ten sposób uruchomiono różne programy. Przygotowano m.in. kubit logiczny, składający się z siedmiu kubitów fizycznych, w którym można było zakodować informacje w sposób odporny na pojawienie się błędów. Naukowcy zauważają, że splątanie wielu takich logicznych kubitów może być znacznie prostsze niż podobne operacje na innych platformach. Istnieje wiele różnych sztuczek, które są stosowane by splątać kubity logiczne. Jednak gdy można swobodnie przesuwać atomy, to jest to bardzo proste. Jedyne, co trzeba zrobić to stworzyć dwa niezależne kubity logiczne, przesunąć je i przemieszać z innymi grupami, wprowadzić za pomocą lasera w stan Rydberga i utworzyć pomiędzy nimi bramkę, stwierdza Dluvstein. Te technika, jak zapewnia uczony, pozwala na przeprowadzenie korekcji błędów i splątania pomiędzy kubitami logicznymi w sposób niemożliwy do uzyskania w obwodach nadprzewodzących czy z uwięzionymi jonami.
Grupa z Wisconsin wykorzystała inne podejście. Naukowcy nie przemieszczali fizycznie atomów, ale za pomocą lasera manipulowali stanem Rydberga i przemieszczali splątanie po macierzy atomów. Mark Saffman podaje przykład trzech kubitów ustawionych w jednej linii. Za pomocą laserów oświetlamy kubit po lewej i kubit centralny Zostają one wzbudzone do stanu Rydberga i splątane. Następnie oświetlamy atom centralny oraz ten po prawej. W ten sposób promienie laserów kontrolują operacje na bramkach, ale tym, co łączy kubity są interakcje zachodzące w stanach Rydberga.
Grupa Saffmana wykorzystała opracowaną przez siebie technikę do stworzenia składających się z sześciu atomów stanów Greenbergera-Horne'a-Zeilingera. Wykazali też, że ich system może działać jak kwantowy symulator służący np. do szacowania energii molekuły wodoru. Dzięki temu, że nie trzeba było przesuwać atomów, zespół z Wisconsin osiągnął kilkaset razy większe tempo pracy niż zespół z Harvarda i MIT, jednak ceną była pewna utrata elastyczności. Saffman uważa, że w przyszłości można będzie połączyć oba pomysły w jeden lepszy system.
Na razie oba systemy korzystają z niewielkiej liczby kubitów, konieczne jest też wykazanie wiarygodności obliczeń oraz możliwości ich skalowania. Chris Monroe, współtwórca pierwszego kwantowego kubita – który oparty był na uwięzionych jonach – uważa, że obie grupy idą w dobrym kierunku, a kubity na atomach mogą osiągnąć wiarygodność 99,9% i to bez korekcji błędów. Obecnie osiągamy taki wynik na uwięzionych jonach i – mimo że technologia wykorzystania atomów jest daleko z tyłu – nie mam wątpliwości, że w końcu osiągną ten sam poziom, stwierdza.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Fizycy z Thomas Jefferson National Accelerator Facility (TJNAF – Jefferson Lab) zmierzyli z niezwykłą dokładnością grubość neutronowej „skórki” tworzącej otoczkę jądra ołowiu. Na łamach Physical Review Letters poinformowali, że grubość ta wynosi 0,28 milionowych części nanometra. A ich pomiary mają duże znaczenie dla określenia struktury i rozmiarów... gwiazd neutronowych.
Jądro każdego pierwiastka składa się z protonów i neutronów. To m.in. one określają właściwości pierwiastków i pozwalają nam je od siebie odróżnić. Fizycy od dawna badają jądra atomowe, by dowiedzieć się, w jaki sposób protony i neutrony oddziałują ze sobą. W Jefferson Lab prowadzony jest Lead Radius Experiment (PREx), którego celem jest dokładne zbadanie rozkładu protonów i neutronów w jądrze ołowiu.
Pytanie brzmi, gdzie w jądrze znajdują się neutrony. Ołów to ciężki pierwiastek. Posiada dodatkowe neutrony. Jeśli jednak bierzemy pod uwagę wyłącznie oddziaływanie sił jądrowych, które wiążą protony i neutrony w jądrze, to lepiej sprawdza się model, w którym jądro ołowiu posiada równą liczbę protonów i neutronów, mówi profesor Kent Paschke z University of Virginia, rzecznik prasowy PREx.
W lekkich jądrach, zawierających niewiele protonów, zwykle rzeczywiście liczba protonów i neutronów jest równa. Jednak im cięższe jądro, tym potrzebuje więcej neutronów niż protonów, by pozostać stabilnym. Wszystkie stabilne jądra pierwiastków, które zawierają ponad 20 protonów, mają więcej neutronów niż protonów. Ołów zaś to najcięższy pierwiastek o stabilnych izotopach. Jego jądro zawiera 82 protony i 126 neutronów. A do zrozumienia, jak to wszystko trzyma się razem, musimy wiedzieć, w jaki sposób w jądrze rozłożone są dodatkowe neutrony.
Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. Tę większą sferę nazwaliśmy skórką neutronową, wyjaśnia Paschke. Tę skórkę po raz pierwszy zauważono właśnie w Jefferson Lab w 2012 roku. Od tamtej pory naukowcy starają się mierzyć jej grubość z coraz większą precyzją.
Neutrony trudno jest badać, gdyż wiele narzędzi, które mają do dyspozycji fizycy, rejestruje oddziaływania elektromagnetyczne, które są jednymi z czterech podstawowych sił natury. Eksperyment PREx do pomiarów wykorzystuje inną z podstawowych sił – oddziaływania słabe. Protony posiadają ładunek elektryczny, który możemy badań za pomocą oddziaływań elektromagnetycznych. Neutrony nie posiadają ładunku elektrycznego, ale – w porównaniu z protonami – generują potężne oddziaływania słabe. Jeśli więc jesteś w stanie to wykorzystać, możesz określić, gdzie znajdują się neutrony, dodaje Paschke.
Autorzy nowych badań wykorzystali precyzyjnie kontrolowany strumień elektronów, który został wystrzelony w stronę cienkiej warstwy ołowiu schłodzonej do temperatur kriogenicznych. Elektrony obracały się w kierunku ruchu wiązki i wchodziły w interakcje z protonami i neutronami w atomach ołowiu. Oddziaływania elektromagnetyczne zachowują symetrię odbicia, a oddziaływania słabe nie. to oznacza, że elektron, który wchodzi w interakcję za pomocą sił elektromagnetycznych, robi to niezależnie od kierunku swojego spinu. Natomiast jeśli chodzi o interakcje za pomocą oddziaływań słabych, to widoczna jest tutaj wyraźna preferencja jednego kierunku spinu. Możemy więc wykorzystać tę asymetrię do badania siły oddziaływań, a to pozwala nam określić obszar zajmowany przez neutrony. Zdradza nam zatem, gdzie w odniesieniu do protonów, znajdują się neutrony, mówi profesor Krishna Kumar z University of Massachusetts Amherst.
Przeprowadzenie eksperymentów wymagało dużej precyzji. Dość wspomnieć, że kierunek spinu elektronów w strumieniu był zmieniany 240 razy na sekundę, a elektrony, zanim dotarły do badanej próbki ołowiu, odbywały ponad kilometrową podróż przez akcelerator. Badacze znali relatywną pozycję względem siebie strumieni elektronów o różnych spinach z dokładnością do szerokości 10 atomów.
Dzięki tak wielkiej precyzji naukowcy stwierdzili, że średnica sfery tworzonej przez protony wynosi około 5,5 femtometrów. A sfera neutronów jest nieco większa, ma około 5,8 femtometrów. Skórka neutronowa ma więc 0,28 femtometra grubości. To około 0,28 milionowych części nanometra, informuje Paschke.
Jak jednak te pomiary przekładają się na naszą wiedzę o gwiazdach neutronowych? Wyniki uzyskane w Jefferson Lab wskazują, że skórka neutronowa jest grubsza, niż sugerowały niektóre teorie. To zaś oznacza, że do ściśnięcia jądra potrzebne jest większe ciśnienie niż sądzono, zatem samo jądro jest nieco mniej gęste. A jako, że nie możemy bezpośrednio badać wnętrza gwiazd neutronowych, musimy opierać się na obliczeniach, do których używamy znanych właściwości składowych tych gwiazd.
Nowe odkrycie ma też znaczenie dla danych z wykrywaczy fal grawitacyjnych. Krążące wokół siebie gwiazdy neutronowe emitują fale grawitacyjne, wykrywane przez LIGO. Gdy już są bardzo blisko, w ostatnim ułamku sekundy oddziaływanie jednej gwiazdy powoduje, że druga staje się owalna. Jeśli skórka neutronowa jest większa, gwiazda przybierze inny kształt niż wówczas, gdy skórka ta jest mniejsza. A LIGO potrafi zmierzyć ten kształt. LIGO i PREx badają całkowicie różne rzeczy, ale łączy je podstawowe równanie – równanie stanu materii jądrowej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Technologicznego w Delft wykazali, że możliwe jest niezależne manipulowanie dwoma rodzajami magnetyzmu w atomach. Magnetyzm w atomach powstaje w wyniku orbitalnego oraz obrotowego ruchu elektronów. W tym pierwszym przypadku mowa jest o ruchu elektronu wokół jądra. Ruch obrotowy zaś to ruch elektronu wokół własnej osi. Jako, że każdy z tych rodzajów ruchu może odbywać się zgodnie z ruchem wskazówek zegara lub w stronę przeciwną, zatem może reprezentować 0 lub 1. Teoretycznie więc w atomie możemy zapisać 2 bity danych.
"W praktyce jednak jest to niezwykle trudne, gdyż jeśli zmienimy kierunek ruchu orbitalnego, niemal zawsze zmieni się kierunek ruchu obrotowego i vice versa", mówi główny autor najnowszych badań, Sander Otte.
Holendrzy, we współpracy z Hiszpanami i Chilijczykami dowiedli, że można odwrócić kierunek ruchu orbitalnego elektronu bez zmiany jego ruchu obrotowego. Osiągnęli to dzięki wykorzystaniu efektu Einsteina-de Haasa. Zgodnie z nim odwrócenie kierunku ruchu orbitalnego można skompensować przez niemierzalnie mały obrót środowiska. W tym przypadku był to kawałek metalu, którego część stanowi atom.
Naukowcy wykorzystali skaningowy mikroskop tunelowy, którego próbnik może manipulować pojedynczymi atomami. Zwykle atom ma kontakt z wieloma sąsiadującymi atomami, co zaburza jego magnetyzm. Otte i jego zespół odseparowali spin od ruchu orbitalnego atomu żelaza umieszczając go na pojedynczym niemagnetycznym atomie azotu. Dzięki temu mogli manipulować ruchem orbitalnym bez wpływania na spin elektronu.
Możliwość przechowywania bitów w pojedynczym atomie zwiększyłaby tysiące razy pojemność obecnych układów pamięci. Do tego jeszcze bardzo długa droga. Otte mówi, że w tej chwili głównym osiągnięciem, z którego naukowcy się bardzo cieszą, jest możliwość kontrolowania pojedynczych atomów oraz elektronów krążących wokół nich.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zanim kwantowe systemy komunikacyjne i kryptograficzne staną się codziennością, naukowcy będą musieli pokonać wiele problemów. Jednym z nich jest stworzenie układów pamięci zdolnych do bezpiecznego przechowywania kwantowych informacji przenoszonych za pomocą światła.
Badacze z Uniwersytetu w Genewie oraz francuskiego Narodowego Centrum Badań Naukowych (CNRS) odkryli, że iterb może przechowywać i chronić kwantowe informacje nawet podczas pracy z dużą częstotliwością. To czyni ten materiał idealnym kandydatem do produkcji układów pamięci dla przyszłych długodystansowych sieci kwantowych.
Obecnie istnieją sieci przekazujące informacje kwantowe na odległość setek kilometrów, jednak brak wzmacniaczy uniemożliwia budowę bardziej rozległych sieci kwantowych.
Jako, że bardzo trudno jest skopiować i wzmocnić sygnał kwantowy, naukowcy szukają odpowiedniego materiału, który pozwoli na zbudowanie kwantowych układów pamięci zdolnych do przechwycenia i synchronizowania fotonów tak, by można było przekazywać je coraz dalej. Trudność polega na znalezieniu materiału zdolnego do odizolowania informacji kwantowej od zewnętrznych zakłóceń tak, byśmy mogli ją przez około sekundę przechować i zsynchronizować fotony, wyjaśnia Mikael Afzelius z Uniwersytetu w Genewie. Foton podróżuje z prędkością około 300 000 kilometrów na sekundę, więc poszukiwany materiał musi pracować z dużymi częstotliwościami.
W laboratoriach istnieją już kwantowe układy pamięci. Niektóre z nich wykorzystują metale ziem rzadkich, takie jak europ czy prazeodym. Jednak układy te nie pracują wystarczająco szybko. Zwróciliśmy więc uwagę na iterb, który był dotychczas rzadko badany w tym kontekście, mówi profesor Nicolas Gisin.
Okazało się, że po poddaniu działaniu dokładnie dobranych pól magnetycznych iterb wchodzi w stan, w którym zostaje odcięty od zewnętrznych zakłóceń, dzięki czemu może przechwycić fotony bez ryzyka ich utraty. Odnaleźliśmy ten „magiczny punkt” testując różne częstotliwości i kierunki pól magnetycznych. Gdy zostaje on osiągnięty czas koherencji atomów iterbu wydłuża się 1000-krotnie, a wszystko przy wysokiej częstotliwości pracy, wyjaśnia Alexey Tiranov.
Teraz naukowcy pracują nad prototypowym iterbowym układem pamięci.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wynikiem współpracy uczonych z Purdue University, University of New South Wales i University of Melbourne jest najmniejszy tranzystor na świecie. Urządzenie zbudowane jest z pojedynczego atomu fosforu. Tranzystor nie tyle udoskonali współczesną technologię, co pozwoli na zbudowanie zupełnie nowych urządzeń.
To piękny przykład kontrolowania materii w skali atomowej i zbudowania dzięki temu urządzenia. Pięćdziesiąt lat temu gdy powstał pierwszy tranzystor nikt nie mógł przewidzieć, jaką rolę odegrają komputery. Teraz przeszliśmy do skali atomowej i rozwijamy nowy paradygmat, który pozwoli na zaprzęgnięcie praw mechaniki kwantowej do dokonania podobnego jak wówczas technologicznego przełomu - mówi Michelle Simmons z University of New South Wales, która kierowała pracami zespołu badawczego.
Niedawno ta sama grupa uczonych połączyła atomy fosforu i krzem w taki sposób, że powstał nanokabel o szerokości zaledwie czterech atomów, który przewodził prąd równie dobrze, jak miedź.
Gerhard Klimeck, który stał na czele grupy uczonych z Purdue prowadzących symulacje działania nowego tranzystora stwierdził, że jest to najmniejszy podzespół elektroniczny. Według mnie osiągnęliśmy granice działania Prawa Moore’a. Podzespołu nie można już zmniejszyć - powiedział.
Prawo Moore’a stwierdza, że liczba tranzystorów w procesorze zwiększa się dwukrotnie w ciągu 18 miesięcy. Najnowsze układy Intela wykorzystują 2,3 miliarda tranzystorów, które znajdują się w odległości 32 nanometrów od siebie. Atom fosforu ma średnicę 0,1 nanometra. Minie jeszcze wiele lat zanim powstaną procesory budowane w takiej skali. Tym bardziej, że tranzystor zbudowany z pojedynczego atomu ma bardzo poważną wadę - działa tylko w temperaturze -196 stopni Celsjusza. Atom znajduje się w studni czy też kanale. Żeby działał jak tranzystor konieczne jest, by elektrony pozostały w tym kanale. Wraz ze wzrostem temperatury elektrony stają się bardziej ruchliwe i wychodzą poza kanał - wyjaśnia Klimeck. Jeśli ktoś opracuje technikę pozwalającą na utrzymanie elektronów w wyznaczonym obszarze, będzie można zbudować komputer działający w temperaturze pokojowej. To podstawowy warunek praktycznego wykorzystania tej technologii - dodaje.
Pojedyncze atomy działające jak tranzystory uzyskiwano już wcześniej, jednak teraz po raz pierwszy udało się ściśle kontrolować ich budowę w skali atomowej. Unikatową rzeczą, jaką osiągnęliśmy, jest precyzyjne umieszczenie pojedynczego atomu tam, gdzie chcieliśmy - powiedział Martin Fuechsle z University of New South Wales.
Niektórzy naukowcy przypuszczają, że jeśli uda się kontrolować elektrony w kanale, to będzie można w ten sposób kontrolować kubity, zatem powstanie komputer kwantowy.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.