Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
![KopalniaWiedzy.pl](https://forum.kopalniawiedzy.pl/uploads/monthly_2020_07/kopalniawiedzy.thumb.png.07866968d851589e849bf8f30744d544.png)
Złapano niskoenergetyczne neutrino
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Wszechświat jest pełen neutrin. Jest ich tak dużo, że w każdej sekundzie przez nasze ciała przelatuje nawet 100 bilionów tych cząstek subatomowych. Mimo tej obfitości neutrino jest najsłabiej poznaną cząstką elementarną. Bardzo słabo oddziałuje ono z materią, dlatego też trudno jest je zarejestrować i badać. Tymczasem fizycy od kilkunastu lat coraz bardziej interesują się neutrinami, gdyż mogą one wyjaśnić wiele tajemnic, na przykład, dlaczego we wszechświecie jest więcej materii niż antymaterii.
Jedną z pierwszych cech neutrin, jakie powinniśmy poznać, są ich rozmiary. Znajomość tego parametru pozwoli na zaprojektowanie bardziej precyzyjnych detektorów, dzięki którym można będzie lepiej zbadać neutrina. Międzynarodowy zespół naukowy opisał na łamach Nature opracowaną przez siebie metodę pomiaru rozmiarów neutrino elektronowego oraz uzyskane wyniki.
Uczeni przeprowadzili eksperyment, podczas którego obserwowali radioaktywny rozpad berylu (7Be). Rozpada się on do litu (7Li). Podczas tego procesu ma miejsce wychwyt elektronu, kiedy to elektron atomu jest przechwytywany przez proton z jego jądra. Powstaje w ten sposób neutron pozostający w jądrze nowego pierwiastka – litu-7 – oraz emitowane jest neutrino elektronowe.
Uwalniana jest energia, która odrzuca nowo powstały atom litu-7 w jednym kierunku, a neutrino w przeciwnym. Badacze obserwowali ten proces w akceleratorze, w którym umieścili bardzo czułe detektory neutrin. Dzięki temu mogli zbadać moment pędu atomu litu i na tej podstawie obliczyć rozmiary neutrino.
Pomiar oddaje kwantową naturę neutrino. Co oznacza, że „rozmiar” należy tutaj rozumieć jako pewien stopień niepewności co do przestrzeni zajmowanej przez neutrino. Z obliczeń wynika, że dolną granicą rozmiarów pakietu falowego neutrino elektronowego jest 6,2 pikometrów. To oznacza, że pakiet falowy neutrin jest znacznie większy niż pakiet falowy typowego jądra atomowego, który liczy się w femtometrach. Dla jądra wodoru jest to ok. 1,2 fm, dla jądra węgla, ok 3,5 fm.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z University of Birmingham opublikowali na łamach Physical Review Letters artykuł, w którym niezwykle szczegółowo opisali naturę fotonów, ich interakcję z materią oraz sposób, w jaki są emitowane przez atomy i molekuły oraz kształtowane przez środowisko. W ten sposób mogli precyzyjnie opisać kształt pojedynczego fotonu. Zadanie to przekraczało dotychczas możliwości nauki, gdyż foton może propagować się w środowisku na niezliczoną liczbę sposobów, przez co trudno jest modelować interakcje, w jakie wchodzi.
Nasze obliczenia pozwoliły nam na przełożenie pozornie nierozwiązywalnego problemu w coś, co można obliczyć. A produktem ubocznym naszego modelu jest możliwość stworzenia obrazu pojedynczego fotonu, czego dotychczas nikt nie dokonał, mówi doktor Benjamin Yuen z Wydziału Fizyki i Astronomii University of Birmingham.
Współautorka badań, profesor Angela Demetriadou stwierdziła: geometria i właściwości optyczne środowiska mają olbrzymi wpływ na sposób emitowania fotonów, definiują ich kształt, barwę, a nawet to, z jakim prawdopodobieństwem istnieją.
Praca brytyjskich uczonych pogłębia naszą wiedzę na temat wymiany energii pomiędzy światłem a materią, pozwala lepiej zrozumieć, w jaki sposób światło wpływa na bliższe i dalsze otoczenie. Pozwolą lepiej manipulować interakcjami światła z materią, a więc przyczynią się do udoskonalenia czujników, ogniw fotowoltaicznych czy komputerów kwantowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z University of Washington zauważyli, że są w stanie wykryć „atomowy oddech” czyli wibracje mechaniczne pomiędzy dwiema warstwami atomów. Dokonali tego obserwując światło emitowane przez atomy wzbudzone laserem. Odkryte zjawisko można wykorzystać do zakodowania i przesłania informacji kwantowej. Uczeni zbudowali urządzenie, które może stać się elementem składowym przyszłych technologii kwantowych.
To nowa platforma w skali atomowej, która wykorzystuje optomechanikę, szereg zjawisk w których ruch światła i ruch mechaniczny są ze sobą nierozerwalnie powiązane. Mamy tutaj efekty kwantowe, które możemy wykorzystać do kontrolowania pojedynczego fotonu przemieszczającego się przez zintegrowane obwody optyczne, mówi profesor Mo Li, który stał na czele grupy badawczej.
Ostatnie badania bazowały na wcześniejszych pracach związanych z ekscytonami. To kwazicząstki w których można zakodować informację kwantową, a następnie przesłać ją w postaci fotonu, którego właściwości kwantowe (jak polaryzacja czy długość fali) pełnią rolę kubitu. A jako że kubit ten jest niesiony przez foton, informacja przemieszcza się z prędkością światła. Fotony są naturalnym wyborem jako nośnik informacji kwantowej, gdyż potrafimy przesyłać je za pomocą światłowodów szybko na duże odległości, nie tracą przy tym zbyt wielu informacji, dodaje doktorantka Adina Ripin.
Naukowcy pracowali w ekscytonami chcąc stworzyć urządzenie emitujące pojedyncze fotony. Obecnie w tym celu używa się atomowych macierzy, takich jak np. znajdujące się w diamentach. Jednak w macierzach takich występują naturalne defekty, które zaburzają pracę tego typu urządzeń. Naukowcy z Uniwersity of Washington chcieli precyzyjnie kontrolować miejsce, z którego będzie dochodziło do emisji fotonu.
Wykorzystali w tym celu nałożone na jednoatomowe warstwy diselenku wolframu. Dwie takie warstwy nałożyli na podłoże, na którym znajdowały się setki kolumienek o szerokości 200 nanometrów każda. Diselenek wolframu przykrył te kolumienki, a ich obecność pod spodem doprowadziła do pojawienia się niewielkich naprężeń w materiale. W wyniku naprężeń znajdujących się w miejscu każdej z kolumienek powstała kropka kwantowa. I to właśnie te kropki są miejscem, w którym dochodzi do emisji. Dzięki precyzyjnemu impulsowi laserowemu naukowcy byli w stanie wybić elektron, tworząc w ten sposób ekscytony. Każdy z ekscytonów składał się z ujemnie naładowanego elektronu z jednej warstwy diselenku wolframu i dodatnio naładowanej dziury z drugiej warstwy. Po chwili elektron wracał w miejsce, w którym przed chwilą się znajdował, a ekscyton emitował foton z zakodowaną informacją kwantową.
Okazało się jednak, że poza fotonami i ekscytonami jest coś jeszcze. Powstawały fonony, kwazicząstki będące produktem wibracji atomowych.
W ten sposób po raz pierwszy zaobserwowano fonony w emiterze pojedynczych fotonów w dwuwymiarowym systemie atomowym. Bliższe analizy wykazały, że każdy foton emitowany w ekscytonu był powiązany z jednym lub więcej fononami. Naukowcy postanowili więc wykorzystać to zjawisko. Okazało się, że za pomocą napięcia elektrycznego mogą wpływać na energię interakcji pomiędzy fotonami i fononami. Zmiany te są mierzalne i można je kontrolować.
To fascynujące, że możemy tutaj obserwować nowy typ hybrydowej platformy kwantowej. Badając interakcję pomiędzy fononami a kwantowymi emiterami, odkryliśmy zupełnie nową rzeczywistość i nowe możliwości kontrolowania i manipulowania stanami kwantowymi. To może prowadzić do kolejnych odkryć w przyszłości, dodaje Ruoming Peng, jeden z autorów badań.
W najbliższym czasie naukowcy chcą stworzyć falowody, za pomocą których będą przechwytywali wygenerowane fotony i kierowali je w wybrane miejsca. Mają tez zamiar skalować swój system, by jednocześnie kontrolować wiele emiterów oraz fonony. W ten sposób poszczególne emitery będą mogły wymieniać informacje, a to będzie stanowiło podstawę do zbudowania kwantowego obwodu. Naszym ostatecznym celem jest budowa zintegrowanego systemu kwantowych emiterów, które mogą wykorzystywać pojedyncze fotony przesyłane za pomocą przewodów optycznych oraz fonony i używać ich do kwantowych obliczeń, wyjaśnia Li.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.