Robb Kulin wycofał się w połowie szkolenia na astronautów NASA. Poprzedni taki przypadek miał miejsce 50 lat temu
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
NASA zaprezentowała pierwsze zdjęcia pełnowymiarowego prototypu sześciu teleskopów, które w przyszłej dekadzie rozpoczną pracę w kosmicznym wykrywaczu fal grawitacyjnych. Budowane przez ekspertów z NASA teleskopy to niezwykle ważne elementy misji LISA (Laser Interferometer Space Antenna), przygotowywanej przez Europejską Agencję Kosmiczną (ESA).
W skład misji LISA będą wchodziły trzy pojazdy kosmiczne, a na pokładzie każdego z nich znajdą się po dwa teleskopy NASA. W 2015 roku ESA wystrzeliła misję LISA Pathfinder, która przetestowała technologie potrzebne do stworzenia misji LISA. Kosmiczny wykrywacz fal grawitacyjnych ma rozpocząć pracę w 2035 roku.
LISA będzie składała się z trzech satelitów, tworzących w przestrzeni kosmicznej trójkąt równoboczny. Każdy z jego boków będzie miał długość 2,5 miliona kilometrów. Na pokładzie każdego z pojazdów znajdą się po dwa identyczne teleskopy, przez które do sąsiednich satelitów wysyłany będzie impuls z lasera pracującego w podczerwieni. Promień będzie trafiał w swobodnie unoszące się na pokładzie każdego satelity pokryte złotem kostki ze złota i platyny o boku 46 mm. Teleskopy będą odbierały światło odbite od kostek i w ten sposób, z dokładnością do pikometrów – bilionowych części metra – określą odległość pomiędzy trzema satelitami. Pojazdy będą umieszczone w takim miejscu przestrzeni kosmicznej, że na kostki nie będzie mogło wpływać nic oprócz fal grawitacyjnych. Zatem wszelkie zmiany odległości będą świadczyły o tym, że przez pojazdy przeszła fala grawitacyjna. Każdy z pojazdów będzie miał na pokładzie dwa teleskopy, dwa lasery i dwie kostki.
Formacja trzech pojazdów kosmicznych zostanie umieszczona na podobnej do ziemskiej orbicie wokół Słońca. Będzie podążała za naszą planetą w średniej odległości 50 milionów kilometrów. Zasada działania LISA bazuje na interferometrii laserowej, jest więc podobna do tego, jak działają ziemskie obserwatoria fal grawitacyjnych, takie jak np. opisywane przez nas LIGO. Po co więc budowanie wykrywaczy w kosmosie, skoro odpowiednie urządzenia istnieją na Ziemi?
Im dłuższe ramiona wykrywacza, tym jest on bardziej czuły na fale grawitacyjne o długim okresie. Maksymalna czułość LIGO, którego ramiona mają długość 4 km, przypada na zakres 500 Hz. Tymczasem w przypadku LISY będzie to zakres 0,12 Hz. Kosmiczny interferometr będzie więc uzupełnienie urządzeń, które posiadamy na Ziemi, pozwoli rejestrować fale grawitacyjne, których ziemskie urządzenia nie zauważą.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Za nieco ponad tydzień wystartuje misja Psyche, która ma za zadanie zbadanie pochodzenia jąder planetarnych. Celem misji jest asteroida 16 Psyche, najbardziej masywna asteroida typu M, która w przeszłości – jak sądzą naukowcy – była jądrem protoplanety. Jej badanie to główny cel misji, jednak przy okazji NASA chce przetestować technologię, z którą eksperci nie potrafią poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera.
Ludzkość planuje wysłanie w dalsze części przestrzeni kosmicznej więcej misji niż kiedykolwiek. Misje te powinny zebrać olbrzymią ilość danych, w tym obrazy i materiały wideo o wysokiej rozdzielczości. Jak jednak przesłać te dane na Ziemię? Obecnie wykorzystuje się transmisję radiową. Fale radiowe mają częstotliwość od 3 Hz do 3 THz. Tymczasem częstotliwość lasera podczerwonego sięga 300 THz, zatem transmisja z jego użyciem byłaby nawet 100-krotnie szybsza. Dlatego też naukowcy od dawna próbują wykorzystać lasery do łączności z pojazdami znajdującymi się poza Ziemią.
Olbrzymią zaletą komunikacji laserowej, obok olbrzymiej pojemności, jest fakt, że wszystkie potrzebne elementy są niewielkie i ulegają ciągłej miniaturyzacji. A ma to olbrzymie znaczenie zarówno przy projektowaniu pojazdów wysyłanych w przestrzeń kosmiczną, jak i stacji nadawczo-odbiorczych na Ziemi. Znacznie łatwiej jest umieścić w pojeździe kosmicznym niewielkie elementy do komunikacji laserowej, niż podzespoły do komunikacji radiowej, w tym olbrzymie anteny.
Gdyby jednak było to tak proste, to od dawna posługiwalibyśmy się laserami odbierając i wysyłając dane do pojazdów poza Ziemią. Tymczasem inżynierowie od dziesięcioleci próbują stworzyć system skutecznej komunikacji laserowej i wciąż im się to nie udało. Już w 1965 roku astronauci z misji Gemini VII próbowali wysłać z orbity sygnał za pomocą ręcznego 3-kilogramowego lasera. Próbę podjęto na długo zanim w ogóle istniały skuteczne systemy komunikacji laserowej. Późniejsze próby były bardziej udane. W 2013 roku przesłano dane pomiędzy satelitą LADEE, znajdującym się na orbicie Księżyca, a Ziemią. Przeprowadzono udane próby pomiędzy Ziemią a pojazdami na orbicie geosynchronicznej, a w bieżącym roku planowany jest test z wykorzystanim Międzynarodowej Stacji Kosmicznej. Psyche będzie pierwszą misją, w przypadku której komunikacja laserowa będzie testowana za pomocą pojazdu znajdującego się w dalszych partiach przestrzeni kosmicznej.
Psyche będzie korzystała ze standardowego systemu komunikacji radiowej. Na pokładzie ma cztery anteny, w tym 2-metrową antenę kierunkową. Na potrzeby eksperymentu pojazd wyposażono w zestaw DSOC (Deep Space Optical Communications). W jego skład wchodzi laser podczerwony, spełniający rolę nadajnika, oraz zliczająca fotony kamera podłączona do 22-centymetrowego teleskopu optycznego, działająca jak odbiornik. Całość zawiera matrycę detektora składającą się z nadprzewodzących kabli działających w temperaturach kriogenicznych. Dzięki nim możliwe jest niezwykle precyzyjne zliczanie fotonów i określanie czasu ich odbioru z dokładnością większa niż nanosekunda. To właśnie w fotonach, a konkretnie w czasie ich przybycia do odbiornika, zakodowana będzie informacja. Taki system, mimo iż skomplikowany, jest mniejszy i lżejszy niż odbiornik radiowy. A to oznacza chociażby mniejsze koszty wystrzelenia pojazdu. Również mniejsze może być instalacja naziemna. Obecnie do komunikacji z misjami kosmicznymi NASA korzysta z Deep Space Network, zestawu 70-metrowych anten, które są drogie w budowie i utrzymaniu.
Komunikacja laserowa ma wiele zalet, ale nie jest pozbawiona wad. Promieniowanie podczerwone jest łatwo blokowane przez chmury i czy dym. Mimo tych trudności, NASA nie rezygnuje z prób. System do nadawania i odbierania laserowych sygnałów ma znaleźć się na pokładzie misji Artemis II, która zabierze ludzi poza orbitę Księżyca. Jeśli się sprawdzi, będziemy mogli na żywo obserwować to wydarzenie w kolorze i rozdzielczości 4K.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Centrum Badań Kosmicznych PAN zakończyła się budowa modelu inżynierskiego instrumentu GLOWS (GLObal solar Wind Structure). GLOWS to fotometr, który będzie liczył fotony odpowiadające długości fali promieniowania Lyman-α (121,56 nm). Zostanie on zainstalowany na pokładzie sondy kosmicznej IMAP (The Interstellar Mapping and Acceleration Probe), która rozpocznie swoją misję w 2025 roku.
Sonda IMAP zostanie umieszczona w punkcie libracyjnym L1 i stamtąd będzie badała przyspieszenie cząstek pochodzących z heliosfery oraz interakcję wiatru słonecznego z lokalnym medium. Dane będą przesyłane na Ziemię w czasie rzeczywistym i posłużą do prognozowania pogody kosmicznej.
Polski GLOWS będzie jednym z 10 instrumentów naukowych znajdujących się na pokładzie IMAP. Jego oś optyczna będzie odchylona o 75 stopni od osi obrotu satelity. Wraz z obrotem IMAP GLOWS będzie skanował okrąg, który codziennie będzie się przesuwał wraz ze zmianą orientacji całego IMAP. W ramach przygotowania eksperymentu zaprojektowaliśmy cały przyrząd: układ optyczny, elektronikę, system zasilania elektrycznego, oprogramowanie do zbierania danych na pokładzie i ich transmisji na Ziemię oraz koncepcję systemu przetwarzania danych na Ziemi, informuje profesor Maciej Bzowski, szef zespołu GLOWS.
Zbudowaliśmy komputerowy model poświaty heliosferycznej, zbadaliśmy tło pozaheliosferyczne oczekiwane w eksperymencie, zidentyfikowaliśmy i wprowadziliśmy do modelu znane źródła astrofizyczne promieniowania Lyman-alfa, zbudowaliśmy listę gwiazd, które posłużą do kalibracji przyrządu. Zbudowaliśmy też prototyp GLOWS i uruchomiliśmy go w warunkach laboratoryjnych. Wreszcie sprawdziliśmy, że przyrząd widzi promieniowanie Lyman-alfa, które ma obserwować w kosmosie. Oznacza to, że zarejestrowaliśmy pierwsze światło, dodaje uczony.
GLOS to pierwszy całkowicie polski instrument i eksperyment przygotowany na misję NASA. Otrzymaliśmy możliwość zarówno zaplanowania eksperymentu, zbudowania absolutnie własnego przyrządu i śledzenia rejestrowanych przez niego danych. Sądzę też, że jako pierwsi będziemy mogli przedstawić własne wyniki tych unikatowych pomiarów. Jesteśmy przekonani, że wkrótce po tym przedstawimy na forum międzynarodowym potwierdzenie naszych teorii które, były inspiracją tego kluczowego eksperymentu, podkreśliła profesor Iwona Stanisławska, dyrektor CBK PAN.
Przed trzema miesiącami dokonano Critical Design Review instrumentu. Obok Polaków wzięli w nim udział m.in. eksperci z NASA, Uniwersytetu Johnsa Hopkinsa i Southwest Research Institute. Przegląd wypadł pomyślnie, co oznacza, że wydano zgodę na rozpoczęcie budowy właściwego urządzenia, które poleci w kosmos.
Prace przy GLOWS pozwalają naszym naukowcom zdobyć cenne doświadczenie i umiejętności. Mogą one skutkować otwarciem w Polsce nowych perspektyw badawczych. Obserwacje satelitarne w zakresie UV to wciąż nowatorska i przyszłościowa dziedzina badań kosmosu. Unikatowe doświadczenia i bardzo specjalistyczna infrastruktura techniczna, w obu przypadkach zdobyte w trakcie realizacji GLOWS, stanowią doskonałą podstawę do realizacji w Polsce przyszłych misji satelitarnych. Tym bardziej, że obserwacje w zakresie UV proponuje szereg ważnych ośrodków naukowych, również polskich, wyjaśnia doktor habilitowany Piotr Orleański, zastępca dyrektora CBK PAN ds. rozwoju technologii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
NASA wyznaczyła datę kolejnej próby startu misji Artemis I. Będzie ona miała miejsce 14 listopada, a 69-minutowe okienko startowe otworzy się o godzinie 6:07 czasu polskiego. Dotychczas podjęto dwie próby startu, a po drugiej z nich nie było pewne, czy we wrześniu uda się przeprowadzić trzecią próbę. Mimo, że usterki, które uniemożliwiły obie próby, udało się usunąć, do Florydy zaczął zbliżać się huragan Ian, w związku z czym podjęto decyzję o przetransportowaniu rakiety do hangaru.
Przeprowadzone po przejściu huraganu inspekcje i analizy wykazały, że przygotowanie rakiety i stanowiska startowego nie wymaga zbyt dużo pracy. Zdecydowano więc o podjęciu drobnych napraw w systemie ochrony termicznej, ponownym załadowaniu lub wymianie akumulatorów, przeprowadzeniu niewielkich zmian w systemie awaryjnego przerwania lotu. Rakieta wyjedzie z hangaru w kierunku stanowiska startowego 4 listopada.
NASA zarezerwowała sobie dwa rezerwowe okna startowe, na 16 i 19 listopada. Wystrzelenie misji podczas którejś z trzech wymienionych dat – 14, 16 lub 19 listopada – będzie oznaczało, że misja Artemis I potrwa około 26 dni.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W nocy z poniedziałku na wtorek NASA pokazała pierwsze pełnokolorowe zdjęcie z Teleskopu Kosmicznego Jamesa Webba. Zobaczyliśmy na nim oddaloną o 4,6 miliarda lat świetlnych gromadę galaktyk SMACS 0723. Jej grawitacja zagina światło z obiektów znajdujących się poza gromadą, powiększając je, dzięki czemu możemy zajrzeć jeszcze głębiej w przestrzeń kosmiczną. Teraz NASA zaprezentowała kolejne zdjęcia.
Możemy więc zobaczyć Mgławicę Carina, jedną z największych i najjaśniejszych mgławic. Znajduje się ona w odległości około 7600 lat świetlnych od Ziemi, w Gwiazdozbiorze Carina. Mgławica Carina jest domem licznych masywnych gwiazd, wielokrotnie większych od Słońca. Widoczne na zdjęciu „góry” i „wąwozy” to krawędź regionu gwiazdotwórczego NGC 3324. Najwyższe „szczyty” mają tutaj około 7 lat świetlnych długości. Webb pokazał miejsca narodzin gwiazd oraz same gwiazdy, których nie było widać w świetle widzialnym.
Webb pokazał nam też Mgławicę Pierścień Południowy, zwaną też Rozerwaną Ósemką. To mgławica planetarna, rozszerzająca się chmura gazu, która otacza umierającą gwiazdę. Rozerwana Ósemka znajduje się w odległości około 2000 lat świetlnych od Ziemi i ma średnicę niemal pół roku świetlnego.
Teleskop Webba jest pierwszym instrumentem, który pokazał nam słabiej świecącą gwiazdę znajdującą się wewnątrz Mgławicy Pierścień Południowy. To właśnie ta gwiazda, z której od tysięcy lat wydobywają się pył i gaz, utworzyła mgławicę. Webb umożliwi astronomom dokładne badanie mgławic planetarnych. Krajobraz jest zdominowany przez dwie gwiazdy krążące wokół siebie po ciasnej orbicie. Gwiazdy te wpływają na rozkład gazu i pyłu rozprzestrzeniającej się z jednej z nich, tworząc nieregularne wzory.
Na kolejnym zdjęciu widzimy Kwintet Stephana, pierwszą kompaktową grupą galaktyk jaką poznała ludzkość. Odkryty on został w 1877 roku. Cztery z pięciu tworzących go galaktyk jest ze sobą powiązanych grawitacyjne. Kwintet Stephana znajduje się w odległości 290 milionów lat świetlnych od nas.
Kwintet Stephana to największy z dotychczasowych obrazów dostarczonych przez Webba. Składa się on z ponad 150 milionów pikseli i został złożony z niemal 1000 zdjęć. Webb sfotografował nawet fale uderzeniowe wstrząsające kwintentem w wyniku przechodzenia przez niego jednej z galaktyk, NGC 7318B.
Mimo że struktura zwana jest kwintetem, to tylko cztery galaktyki (NGC 7317, NGC 7318A, NGC 7318B i NGC 7319) są powiązane grawitacyjnie i znajdują się 290 milionów lat świetlnych od nas. Piąta z nich, NGC 7320, znajduje się w odległości 40 milionów lat świetlnych od Ziemi.
Teleskop dostarczył też obraz spektroskopowy planety WASP-96b. To gorący gazowy olbrzym oddalony o 1150 lat świetlnych od Ziemi. Okrąża swoją gwiazdę w 3,4 doby i ma masę o połowę mniejszą od masy Jowisza. Dane potwierdzają obecność wody w atmosferze WASP 96b, naukowcy zaobserwowali w nich dowody na obecność mgły oraz chmur, których nie widzieliśmy podczas wcześniejszych obserwacji. Dokładniejsza analiza danych pozwoli na okreslenie ilości pary wodnej, węgla, tlenu oraz ocenę zmian temperatury atmosfery w zależności od jej wysokości nad planetą.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.