Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Złoto i platyna dorównały ścieralnością diamentowi
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Chrysopoeia to używany przez alchemików termin na transmutację (przemianę) ołowiu w złoto. Alchemicy zauważyli, że tani i powszechnie występujący ołów ma podobną gęstość do złota i na tej podstawie próbowali opracować metodę zamiany jednego materiału w drugi. Po wielu wiekach badań i rozwoju nauki ludzkość dowiedziała się, że ołów i złoto to różne pierwiastki i metodami chemicznymi nie uda się zamienić jednego w drugi.
Dopiero na początku XX wieku okazało się, że pierwiastki mogą zmieniać się w inne, na przykład drogą rozpadu radioaktywnego, fuzji jądrowej czy też można tego dokonać bombardując je protonami lub neutronami. W ten sposób dokonywano już w przeszłości zamiany ołowiu w złoto.
Teraz w eksperymencie ALICE w Wielkim Zderzaczu Hadronów zarejestrowany nowy mechanizm transmutacji ołowiu w złoto. Doszło do niej podczas bardzo bliskiego minięcia się atomów ołowiu. W LHC naukowcy zderzają ze sobą jądra ołowiu, uzyskując plazmę kwarkowo-gluonową. Jednak interesują ich nie tylko bezpośrednie zderzenia jąder atomowych. Z punktu widzenia fizyki niezwykle ciekawe są też sytuacje, gdy do zderzeń nie dochodzi, ale jądra mijają się w niewielkiej odległości. Intensywne pola elektromagnetyczne otaczające jądra mogą prowadzić do interakcji, które są przedmiotem badań.
Ołów, dzięki swoim 82 protonom, ma wyjątkowo silne pole elektromagnetyczne. Co więcej w Wielkim Zderzaczu Hadronów jądra ołowiu rozpędzane są do 99.999993% prędkości światła, co powoduje, że linie ich pola elektromagnetycznego zostają ściśnięte, przypominając naleśnik. Układają się poprzecznie do kierunku ruchu, emitując krótkie impulsy fotonów. Często dochodzi wówczas do dysocjacji elektromagnetycznej, gdy wskutek interakcji z fotonem w jądrze zachodzi oscylacja, w wyniku której wyrzucane są z niego protony lub neutrony. By w ten sposób ołów zmienił się w złoto (które posiada 79 protonów), jądro ołowiu musi utracić 3 protony.
To niezwykłe, że nasz detektor jest stanie analizować zderzenia, w których powstają tysiące cząstek, a jednocześnie jest tak czuły, że wykrywa procesy, w ramach których pojawia się zaledwie kilka cząstek. Dzięki temu możemy badać elektromagnetyczną transmutację jądrową, mówi rzecznik prasowy eksperymentu ALICE, Marco Van Leeuwen.
Uczeni wykorzystywali kalorymetry do pomiarów interakcji fotonów z jądrami, w wyniku których dochodziło do emisji 0, 1, 2 lub 3 protonów z towarzyszącym co najmniej 1 neutronem. W ten sposób jądra ołowiu albo pozostawały jądrami ołowiu, albo zamieniały się w tal, rtęć lub złoto.
Złoto powstawało rzadziej niż tal czy rtęć. Maksymalne tempo jego wytwarzania wynosiło około 89 000 jąder złota na sekundę. Analiza danych z ALICE wykazała, że w całym LHC w latach 2015–2018 powstało 86 miliardów atomów złota. Współcześni fizycy są więc bardziej skuteczni niż alchemicy. Podobnie jednak jak oni, nie obsypią swoich władców złotem. Te 86 miliardów atomów to zaledwie 29 pikogramów (2,9x10-11 grama).
« powrót do artykułu -
przez KopalniaWiedzy.pl
Do Muzeum Czech Wschodnich w Hradcu Kralove zgłosili się dwaj turyści, którzy przynieśli... kilka kilogramów złota. Złote monety, bransolety, tabakiery, pudernica, grzebień i klucz na łańcuszku zostały znalezione w bardzo nietypowym skarbie. Zwykle złote skarby zakopane w ziemi pochodzą sprzed wieków lub tysiącleci. Nasi turyści odkryli złoto porastającym lasem byłym polu uprawnym, gdy zauważyli wystającą z ziemi aluminiową skrzynkę.
Po otwarciu skrzynki okazało się, że wewnątrz jest 598 złotych monet zorganizowanych w 11 kolumn owiniętych czarnym materiałem. Metr obok leżała zaś żelazna skrzynka z wykonanymi z żółtego metalu 16 tabakierami, 10 bransoletami, torbą z metalowej plecionki, grzebieniem, łańcuszkiem z kluczem i pudernicy. Monety ważą niemal 4 kilogramy i są złote. Obecnie naukowcy badają materiał, z którego wykonano pozostałe przedmioty. To niezbędne, by opracować metodę ich konserwacji.
Skarb jest nietypowy nie tylko dlatego, że nie jest zbyt stary, na co wskazuje chociażby aluminiowa skrzynka. Niezwykły jest też jego skład. Monety zostały wybite w latach 1808–1915, jednak rok 1915 nie jest tym, który wskazuje na datę ukrycia złota. Na niektórych monetach znaleziono bowiem kontrmarki wskazujące, że zostały one wybite w latach 20. i 30. XX wieku na terenie byłej Jugosławii. Jakby jeszcze tajemnic było mało, w skarbie znajdują się głównie monety francuskie, są też austro-węgierskie, belgijskie i ottomańskie. Natomiast brak w skarbie monet niemieckich czy czechosłowackich.
Sama wartość złota ze skarbu wynosi co najmniej 7,5 miliona koron. Zgodnie z czeskim prawem, znalazcy należy się nagroda szacowana albo na podstawie wartości metalu szlachetnego lub innego cennego materiału, albo na podstawie wartości historycznej znaleziska. W przypadku szacunku po cenie materiału, znalazca może otrzymać do 100% jego wartości. W pozostałych przypadkach jest to do 10% wartości historycznej oszacowanej przez eksperta.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nigdy dotąd nie inwestowano tak dużo pieniędzy i talentu w baterie, kończy swoją książkę Łukasz Bednarski. Jak sam twierdzi, stworzył publikację niszową. I nawet jeśli ma rację, to jego książkę czyta się lepiej, niż niejeden tytuł kierowany do szerokiego odbiorcy.
"Lit: złoto przyszłości" to fascynująca opowieść o ludziach, przedsiębiorstwach i państwach biorących udział w toczącej się na naszych oczach rewolucji technologicznej, gospodarczej i politycznej. Ale przede wszystkim to opowieść o pierwiastku, który jest dla XXI wieku tym, czym dla wieku XX była ropa naftowa. Ci, którzy posiadają złoża litu i ci, którzy potrafią z nich skorzystać, mogą już wkrótce decydować o przyszłości świata.
Autor jest analitykiem rynku, ale nie znajdziemy tutaj niezrozumiałego branżowego żargonu, wykresów, wzorów i tabelek. Dostajemy opowieść, w której przewijają się i historia polityczno-gospodarcza prowincji Sinciang, i szara eminencja chilijskiego sektora litowego, czytamy o olbrzymim potencjale drzemiącym w górnictwie miejskim i „Arabii Saudyjskiej litu” – Boliwii, dowiemy się też, że rewolucję elektromobilności chciał rozpocząć już Mao Zedong.
Bednarski w jasny sposób tłumaczy jak zbudowany jest i jak działa akumulator litowo-jonowy, a skomplikowane procesy gospodarcze i polityczne wyjaśnia tak, że ani przez moment nie czujemy się zagubieni czy znudzeni. Książka pozwala zrozumieć, dlaczego lit jest tak ważny, jakie szanse i perspektywy przed nami otwiera, ale również, z jakimi zagrożeniami i konfliktami wiąże się jego wydobycie, jakie trudności trzeba pokonać, by rynek akumulatorów litowych mógł się w pełni rozwinąć. O ile na przeszkodzie nie staną alternatywne pierwiastki, jak magnez czy wodór.
Muszę przyznać, że szerokim łukiem omijam książki z dziedziny analiz rynkowych. Ta jest tak świetnie napisana, że chętnie przeczytam więcej. Najchętniej tego samego autora.
-
przez KopalniaWiedzy.pl
Dzięki innowacyjnemu przenośnemu laserowi dowiedzieliśmy się, że złoto z Troi, oddalonej od niej o 60 kilometrów Poliochni z wyspy Lemnos oraz z Ur w Mezopotamii pochodzi z tej samej okolicy, było więc przedmiotem długodystansowego handlu. Nowatorskie podejście badawcze pozwoliło na poznanie tajemnic złotej biżuterii, która dotychczas nie była badana, gdyż jest tak cenna, że nie zgadzano się na jej przewożenie czy wykonywanie badań pozostawiających na niej widoczne ślady.
Badania zainicjowali Ernest Pernicka z Uniwersytetu w Tybindze oraz Barbara Horejs z Austriackiej Akademii Nauk. Stali oni na czele międzynarodowego zespołu złożonego ze specjalistów z Curt-Engelhorn-Zentrum Archäometrie, Austriackiej Akademii Nauk i Narodowego Muzeum Archeologicznego w Atenach.
Od czasu, gdy w 1873 roku Henryk Schliemann odkrył w Troi Skarb Priama, naukowcy zastanawiali się, skąd pochodziło złoto, z którego został wykonany. Teraz dowiedzieliśmy się, że jego źródłem były złoża wtórne, jak np. rzeki, a skład chemiczny kruszcu ze Skarbu Priama jest identyczny jak złota z Polichni, Urn oraz obiektów znalezionych na terenie Gruzji. To oznacza, że pomiędzy tymi lokalizacjami prowadzono długodystansowy handel, mówi Pernicka.
Narodowe Muzeum Archeologiczne w Atenach nie zgadza się ani na zabieranie Skarbu Priama poza muzeum, ani na prowadzenie badań, które zostawiłyby na nim widoczne ślady. Dotychczas żadna z metod badawczych, która mogłaby odpowiedzieć na pytanie o pochodzenie złota, nie spełniała obu tych warunków jednocześnie. Dlatego też grupa Pernicki i Horejs wykorzystała przenośny laser, który wytopił niewidoczną gołym okiem dziurkę o średnicy 120 mikrometrów. Pobraną w ten sposób próbkę zbadano za pomocą spektrometrii mas w Curt-Engelhorn-Zentrum Archäometrie w Mannheim.
W dawnej złotej biżuterii można znaleźć też ślady srebra, miedzi, cynku, palladu i platyny. To pozwala na określenie chemicznego profilu złoża, z którego złoto pochodzi. Na przykład wysoka koncentracja cynku, palladu i platyny w Skarbie Priama wskazała uczonym, że złoto zostało wymyte przez rzekę, z której zostało pozyskane w formie złotego piasku. Naukowcy wykazali też, że mieliśmy tutaj do czynienia z masową produkcją, a nie indywidualną. To bowiem jedyne wyjaśnienie faktu, że w złotych dyskach tworzących pochodzące z różnych miejsc naszyjniki o podobnym wyglądzie, występuje identyczna ilość palladu i platyny.
Naukowcy przebadali 61 przedmiotów z epoki brązu z lat 2500–2000 p.n.e. To pozwoliło też na rozwiązanie zagadki złota z Ur. W Mezopotamii nie ma bowiem naturalnych złóż złota. Występują za to w Zachodniej Anatolii, gdzie leży Troja, zatem spekulowano, że złoto z biżuterii z Ur mogło pochodzić stamtąd. Nie było to jednak pewne, gdyż złoto występuje też w innych miejscach z którymi Ur łączyły silne relacje handlowe. Zaś badania porównawcze złotych wyrobów wykazały olbrzymie podobieństwa pomiędzy biżuterią znalezioną na wielkim obszarze rozciągającym się od Morza Egejskiego po dolinę Indusu i współczesny Pakistan. Znaleziono na nim pieczęcie, standaryzowane odważniki, podobne kolczyki czy kamienie szlachetne. Wszystkie te badania pokazują, już 4500 lat temu istniały ramy, na których powstały współczesne społeczeństwa z ich relacjami handlowymi.
W tej chwili jednak naukowcy nie byli w stanie wskazać dokładnego miejsca pozyskiwania złota, z którego powstała biżuteria z Troi, Poliochni i Ur. Stosunek pierwiastków śladowych sugeruje, że źródłem złota była Gruzja epoki brązu. Wciąż jednak mamy za mało danych z innych regionów i obiektów, by to potwierdzić, mówi Pernicka.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dzięki badaniom przeprowadzonym w ISIS, brytyjskim źródle neutronów i mionów, naukowcy mogli określić stan... gospodarki Imperium Rzymskiego za rządów trzech cesarzy. Niedestrukcyjnym badaniom poddano trzy monety, wybite za czasów Tyberiusza (cesarz w latach 14–37), Hadriana (117–138) i Juliana II (361–363). Gdy bowiem w grę wchodzą cenne zabytki, naukowcy prowadzą badania metodami niedestrukcyjnymi. Oznacza to np. że z zabytku nie można pobrać próbek. A to z kolei znacznie ogranicza możliwości badawcze. Na szczęście obecnie w sukurs przychodzą takie narzędzia jak ISIS.
Naukowcy z University of Oxford i University of Warwick postanowili sprawdzić skład wspomnianych monet. Sprawdzenie, czy ich powierzchnia nie została sztucznie wzbogacona lub czy do metali bardziej szlachetnych nie dodano zbyt dużo tańszych metali może wiele powiedzieć o społeczeństwie i stanie gospodarki z czasów, gdy monety wybito.
Już wcześniej było wiadomo, że powierzchnia monet to w dużej mierze czyste złoto. Jednak badania takie ograniczały się do ułamków milimetra grubości monety. Istniało więc uzasadnione podejrzenie „a co, jeśli?”. Wiemy, że Rzymianie celowo wzbogacali powierzchnię swoich srebrnych monet, by ukryć fakt, że wewnątrz są one pełne miedzi. Mieliśmy więc pełne podstawy, by uważać, że coś podobnego mogli robić ze złotymi monetami. Dzięki ISIS mogliśmy dotrzeć do samego środka monet w sposób całkowicie niedestrukcyjny. Przekonaliśmy się, że wysoki odsetek czystego złota, z jakim mamy do czynienia na powierzchni monet, pozostaje stały na całej grubości monety, mówi główny autor badań, doktor George Green z University of Oxford.
Z jednej strony to potwierdzenie dobrego stanu rzymskiej gospodarki z czasów wybicia monet. Z drugiej zaś, jak zapewnia Green, upewnienie się, że w przypadku rzymskich złotych monet, to, co widać na powierzchni, znajduje się też we wnętrzu.
Spektroskopia z użyciem mionów ma i tę zaletę, że nie wymaga wcześniejszego oczyszczenia badanego obiektu, co pozwala na zmniejszenie kosztów, zaoszczędzenie czasu oraz – często – uchronienie zabytku, który może prowadzić do jego uszkodzenia. Dlatego też technika taka jest szczególnie użyteczna przy badaniu np. obiektów wydobytych z wraków.
Metoda ta polega na wystrzeleniu strumienia mionów w kierunku badanego obiektu. Są one przechwytywane przez atomy w monetach, w wyniku czego dochodzi do emisji promieniowania unikatowego dla pierwiastków, z których ono pochodzi.
Uzyskane wyniki pokazują, jak wielki potencjał drzemie w tej metodzie badawczej. To technika niedestrukcyjna, która pozwala na zajrzenie pod powierzchnię zabytków. Nie wymaga ona specjalnego przygotowania próbki i nie powoduje, że badany obiekt staje się radioaktywny. Jest zatem idealnym narzędziem do badań zabytków. Pozwala ona nie tylko sprawdzić skład monet pod ich powierzchnią, ale określić m.in. głębokość korozji, zidentyfikować unikatowe zmiany składu chemicznego związane z konkretnym procesem produkcyjnym, czy też przekonać się, czy nie mamy do czynienia z fałszywką, dodaje doktor Adrian Hillier, odpowiedzialny w ISIS za badania z użyciem mionów.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.