Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Curiosity znalazł molekuły organiczne w marsjańskich skałach

Rekomendowane odpowiedzi

NASA ogłosiła, że łazik Curiosity znalazł nowe dowody wskazujące, że na Marsie mogło istnieć życie. Jego potencjalne ślady znaleziono w skałach i marsjańskiej atmosferze. Te nowe dowody to molekuły organiczne w skałach osadowych sprzed trzech miliardów lat oraz sezonowe zmiany poziomu metanu w atmosferze.

Molekuły organiczne zawierają węgiel i wodór. W ich skład mogą wchodzić też tlen, azot i inne pierwiastki. Ich obecność zwykle jest związana z istnieniem życia, ale mogą one również powstawać w procesach niebiologicznych i niekoniecznie są dowodami na istnienie życia.

Mars mówi nam, żebyśmy nadal szukali dowodów na istnienie życia. Jestem pewien, że nasze kolejne misje przyniosą kolejne niesamowite odkrycia związane z Czerwoną Planetą, mówi Thomas Zurbuchen szef Dyrektoriatu Misji Naukowych NASA.
Curiosity nie określił pochodzenia tych molekuł. Jednak niezależnie od tego, czy jest to zapis dawnego życia, dowód na istnienie materii podtrzymującej życie czy też molekuły te istniały bez obecności życia, materia organiczna na Marsie zawiera wiele odpowiedzi dotyczących historii tej planety, dodaje Jen Eigenbrode z Goddard Space Flight Center, która jest główną autorką dwóch artykułów na temat odkrycia opublikowanych w Science.

Obecnie powierzchnia Marsa nie nadaje się do życia. Jednak już wcześniej zdobyto dowody, że w przeszłości na Marsie mogła istnieć woda w stanie ciekłym. Teraz w Kraterze Gale, w którym przed miliardami lat istniało jezioro, istniały też wszystkie składniki potrzebne do pojawienia się życia. Powierzchnia Marsa jest wystawiona na działanie promieniowania kosmicznego. Promieniowanie to wraz z różnymi związkami chemicznymi rozbijają materię organiczną. Znalezienie materii organicznej na głębokości pięciu centymetrów pod powierzchnią marsa, która znalazła się tam w czasie, gdy na Marsie mogło istnieć życie, zachęca nas do dalszych poszukiwań. W ramach przyszłych misji będziemy wiercili głębiej, dodaje Eigenbrode.

Naukowcy opisują też sezonowe zmiany poziomu metanu w atmosferze Marsa. Curiosity wykrywał takie zmiany przez trzy marsjańskie lata, co odpowiada sześciu ziemskim latom. Metan mógł powstać w wyniku interakcji wody ze skałami, jednak nie można wykluczyć jego organicznego pochodzenia. Przeprowadzona przez Curiosity badania wykazały, że poziom metanu wzrasta podczas gorących letnich miesięcy i spada w czasie zimy.

Obecnie ludzkość prowadzi kilka misji marsjańskich. Na orbicie planety znajdują się Mars Odyssey (NASA), Mars Express (ESA), Mars Reconnaissance Orbiter (NASA), Mars Orbiter Mission (Indie), MAVEN (NASA) oraz ExoMars Trace Gas Orbiter (ESA/Roskosmos). Na powierzchni planety pracują zaś łaziki Opportunity (NASA) i Curiosity (NASA). W kierunku Czerwonej Planety leci obecnie misja InSight (NASA). Na rok 2020 przygotowywanych jest aż pięć misji.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Cytat

Molekuły organiczne ...niekoniecznie są dowodami na istnienie życia

Tym samym firma NASA zdobyła kolejne potężne środki finansowe.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie są. Ale życie jest równie powszechne jak warunki mu sprzyjające :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Na opisywanej przez nas przed kilkunastoma miesiącami planecie hyceańskiej K2-18b odkryto najsilniejsze dotychczas wskazówki mogące świadczyć o istnieniu życia pozaziemskiego. Naukowcy z Uniwersytetu w Cambridge poinformowali właśnie, że dzięki Teleskopowi Webba zauważyli w atmosferze K2-18b sygnały świadczące o istnieniu tam siarczku dimetylu (DMS) i/lub disiarczku dimetylu (DMDS). Na Ziemi związki te powstają wyłącznie w wyniku działania organizmów żywych. To oznacza, że albo na K2-18b istnieje życie, albo zachodzi tam nieznany nauce proces chemiczny, albo... że to fałszywy sygnał.
      W przypadku opisywanych tutaj badań wartość odchylenia standardowego wynosi 3 sigma, co oznacza, że istnienie 0,3-procentowe prawdopodobieństwo, iż zaobserwowany sygnał jest fałszywy. Wartość odchylenia standardowego, od której w nauce ogłaszane jest odkrycie wynosi 5 sigma. Przy tym poziomie prawdopodobieństwo, iż zarejestrowane dane są przypadkowym fałszywym sygnałem wynosi poniżej 0,00006%. Naukowcy z Cambridge mówią, że potrzebują od 16 do 24 godzin obserwacji za pomocą Teleskopu Webba, by (ewentualnie) zwiększyć poziom ufności do 5 sigma.
      K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hyceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hyceańskich jest łatwiej badać, mówił przed kilkunastoma miesiącami Nikku Madhusudhan z Uniwersytetu w Cambridge.
      Termin „planety hyceańskie" został ukuty – na podstawie badań K2-18b – przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
      Badacze z Cambridge obserwują K2-18b za pomocą Teleskopu Webba. Już wcześniej za pomocą instrumentów NIRISS i NIRSpec zauważyli sygnały, które mogą pochodzić od siarczku dimetylu. Niedawno potwierdzili je za pomocą instrumentu MIRI. To niezależna linia dowodowa, zdobyta za pomocą instrumentu, którego wcześnie nie wykorzystywaliśmy. Działa on w zakresie fal świetlnych, który nie nakłada się na zakres wcześniej używanych instrumentów. Sygnał jest silny i czytelny, mówi główny autor badań, profesor Nikku Madhusudhan.
      Dotychczas przeprowadzone badania wskazują jednak, że poziom DMS/DMDS w atmosferze K2-18b jest tysiące razy wyższy, niż w atmosferze Ziemi i wynosi ponad 10 części na milion. Wcześniejsze prace teoretyczne wskazywały, że atmosfera planet hyceańskich może być bogata w gazy zawierające siarkę. Nasze obserwacje zgadzają się z teoretycznymi obliczeniami. Biorąc pod uwagę to, co dotychczas wiemy o tej planecie, najbardziej możliwym scenariuszem jest świat hyceański, w którego oceanie istnieje życie, dodaje uczony.
      Naukowiec studzi jednak zapał i podkreśla, że jest zbyt wcześnie, by ogłaszać istnienie życia na egzoplanecie. Może bowiem istnieć nieznany nam proces chemiczny, w wyniku którego powstają DMS i DMDS. Dlatego też chce przeprowadzić eksperymenty i badania teoretyczne, by sprawdzić, czy wspomniane związki mogą powstawać w procesach nie związanych z biologią i w takiej ilości, jak zostały zaobserwowane.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W przeszłości Mars posiadał silne pole magnetyczne. Obecnie pozostały po nim ślady w marsjańskich skałach. Są to jednak ślady nietypowe. Sonda Mars Global Surveyor już w 1999 roku zauważyła, że skały na południowej półkuli Marsa noszą ślady silnego oddziaływania pola magnetycznego. Na półkuli północnej tak silnych sygnałów nie zauważono. Zjawisko to od dawna zastanawiało naukowców. Teraz uczeni z Instytutu Geofizyki University of Texas zaproponowali rozwiązanie zagadki.
      Ostatnie pomiary wykonane przez misję InSight pokazują, że jądro Marsa jest mniej gęste niż sądzono. To wskazuje, że Mars prawdopodobnie nigdy nie miał stałego jądra, czytamy na łamach Geophysical Research Letters. Zespół Chi Yana opisał wyniki swoich symulacji komputerowych, z których wynika, że całkowicie płynne jądro, bez części z ciała stałego, dobrze wyjaśnia widoczną różnicę w zapisie oddziaływania pola magnetycznego na różnych półkulach. Jeśli nie ma sztywnego wewnętrznego jądra, ze znacznie większą łatwością powstaje pole magnetyczne obejmujące tylko jedną półkulę. To zaś mogło mieć wpływ zarówno na działanie pola magnetycznego Marsa oraz jego możliwość utrzymania atmosfery, wyjaśnia Yan.
      Dotychczas większość badaczy zakładała, że jądro Marsa jest podobne do ziemskiego i składa się ze stałego jądra wewnętrznego oraz otaczającego je płynnego jądra zewnętrznego. Badania misji InSight pokazały, że jądro Marsa składa się z lżejszych pierwiastków niż się spodziewano. To zaś oznacza, że jego temperatura topnienia jest inna niż temperatura topnienia jądra Ziemi i prawdopodobnie jest ono całkowicie płynne. Jeśli zaś jądro Czerwonej Planety jest płynne obecnie, to niemal na pewno było płynne 4 miliardy lat temu, gdy Mars posiadał silne pole magnetyczne, wyjaśnia profesor Sabine Stanley z Uniwersytetu Johnsa Hopkinsa.
      Uczeni postanowili przetestować tę hipotezę i stworzyli model, który symulował całkowicie płynne jądro Marsa. Uruchomili go kilkanaście razy, za każdym tak ustawiając parametry symulacji, by płaszcz planety na półkuli północnej był nieco cieplejszy niż na półkuli południowej. Okazało się, że przy pewnej różnicy temperatur ciepło uciekające z jądra było uwalniane tylko przez chłodniejszą półkulę południową, co powodowało pojawienie się na niej silnego pola magnetycznego. Nie wiemy, czy to wyjaśnia historię pola magnetycznego Marsa, ale niezwykle ekscytujące jest samo stwierdzenie, że na planecie może istnieć pole magnetyczne obejmujące tylko jej część, a struktura symulowanego jądra pasuje do badań przeprowadzonych przez InSight, mówi Stanley.
      Zdaniem naukowców, ich badania to przekonująca alternatywa dla hipotezy mówiącej, że ślady działania pola magnetycznego na półkuli północnej zostały zniszczone przez uderzenia asteroid.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Kosmiczna niezwykłość, która rzuca wyzwanie naszemu rozumieniu wszechświata, pokazuje, jaki los może spotkać Drogę Mleczną. Międzynarodowy zespół naukowy, który pracował pod kierunkiem ekspertów z CHRIST University w Bangalore, badał olbrzymią galaktykę spiralną położoną w odległości miliarda lat świetlnych od Ziemi. W centrum galaktyki znajduje się supermasywna czarna dziura o masie miliardy razy większej od masy Słońca, która napędza gigantyczne dżety radiowe o długości 6 milionów lat świetlnych.
      Badana galaktyka jest jedną z największych znanych galaktyk spiralnych. Równie wyjątkowe są jej dżety. Tak potężne znajdowano dotychczas niemal wyłącznie w galaktykach eliptycznych, nie spiralnych. To oznacza, że potencjalnie i Droga Mleczna mogłaby wygenerować w przyszłości tak potężne dżety. Jeśli by do tego doszło, mogłoby to oznaczać masowe wymieranie na Ziemi w wyniku intensywnego promieniowania
      To odkrycie skłania nas do przemyślenia ewolucji galaktyk, zwiększania masy czarnych dziur i oraz sposobu, w jaki kształtują one swoje otoczenie. Jeśli galaktyka spiralna jest w stanie nie tylko przetrwać, ale i rozwijać się w tak ekstremalnych warunkach, co to oznacza dla przyszłości Drogi Mlecznej? Czy nasza galaktyka doświadczy w przyszłości takiego wysokoenergetycznego zjawiska, które będzie miało poważne konsekwencje dla życia?, zastanawia się główny autor badań, profesor Joydeep Bagchi.
      Badacze wykorzystali Teleskop Hubble'a, Giant Metrewave Radio Telescope oraz Atacama Large Millimeter Wave Array za pomocą których przyjrzeli się galaktyce 2MASX J23453268−0449256. Ma ona średnicę 3-krotnie większą od Drogi Mlecznej. W jej wnętrzu odkryli supermasywną czarną dziurę emitującą potężne dżety. Właśnie te dżety są najbardziej zaskakujące. Obowiązuje bowiem pogląd, zgodnie z którym tak aktywne dżety powinny zniszczyć delikatną strukturę galaktyki spiralnej.
      Tymczasem 2MASX J23453268−0449256 ma dobrze widoczne ramiona, niewielką poprzeczkę oraz otaczający ją niezakłócony wewnętrzny pierścień gwiazd o średnicy 4,4 kpc (ponad 14 000 lat świetlnych). Galaktykę otacza rozległe halo gorącego gazu emitującego promieniowanie rentgenowskie. Halo powoli stygnie, jednak potężne dżety działają jak piec, uniemożliwiając tworzenie się tam gwiazd, pomimo wystarczającej do ich powstania ilości materiału.
      Centralna czarna dziura w Drodze Mlecznej – Sagittarius A (Sgr A*) – ma masę 4 milionów mas Słońca i jest wyjątkowo spokojna. Jednak, jak mówią badacze, może się to zmienić, jeśli wchłonie duża chmurę gazu, gwiazdę czy galaktykę karłowatą. W takiej sytuacji mogłyby pojawić się duże dżety. Takie zjawiska, zwane rozerwaniami pływowymi (TDE – tidal disruption event), obserwowano już w innych galaktykach. Gdyby Sgr A* zaczęła napędzać dżety, to ich wpływ zależałby od siły, kierunku i emisji energii. Taki dżet skierowany w pobliże Układu Słonecznego mógłby pozbawić planety atmosfery, doprowadzić do uszkodzeń DNA w wyniku zwiększonego promieniowania. pozbawić Ziemię warstwy ozonowej i doprowadzić do masowego wymierania.
      Autorzy badań zauważyli też, że 2MASX J23453268−0449256 zawiera 10-krotnie więcej ciemnej materii niż Droga Mleczna. Jej obecność może być kluczowa dla stabilności tej szybko obracającej się galaktyki. Fascynującym tematem przyszłych badań może być przeanalizowanie zależności pomiędzy ciemną materią, aktywnością czarnej dziury a strukturą tej galaktyki.
      Ze szczegółami można zapoznać się na łamach Monthly Notices of the Royal Astronomical Society.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania próbek asteroidy Bennu dostarczonych na Ziemię przez misję OSIRIS-REx wykazały, że znajdują się tam molekuły, które na Ziemi są niezbędnymi składnikami do powstania życia. Znaleziono też ślady świadczące o obecności słonej wody. Mogła ona być miejscem, w którym dochodziło do interakcji i łączenia się tych molekuł.
      NASA zastrzega, że odkrycie nie jest równoznaczne z odkryciem życia na asteroidzie. Sugeruje ono jednak, że we wczesnym Układzie Słonecznym powszechnie istniały warunki niezbędne do powstania życia, a to zwiększa prawdopodobieństwo znalezienia go na innych ciałach niebieskich.
      Na łamach Nature i Nature Astronomy ukazały się dwa artykuły, w których naukowcy z NASA i innych instytucji – zarówno z USA, jak i Niemiec, Japonii, Francji, Wielkiej Brytanii czy Australii – omawiają wyniki swoich badań.
      W Nature Astronomy zespół prowadzony przez Daniela P. Glavina z NASA informuje, że na asteroidzie zidentyfikowano 14 z 20 podstawowych (kanonicznych) aminokwasów białkowych, z których powstają białkna na Ziemi oraz wszystkie pięć podstawowych zasad azotowych nukleotydów, które ziemskie organizmy żywe wykorzystują do przechowywania i przekazywania informacji genetycznej. Odnotowano też bardzo wysoki poziom amoniaku. Jest on bardzo ważny z punktu widzenia biologii, gdyż reaguje z formaldehydem – również znalezionym w próbkach z Bennu – i w odpowiednich warunkach tworzy bardziej złożone molekuły, jak aminokwasy.
      Wszystkie elementy niezbędne do powstania życia, które znaleziono na Bennu, zidentyfikowano już wcześniej na innych skałach pochodzenia kosmicznego. Tym razem jednak mamy dziewicze próbki pobrane w przestrzeni kosmicznej, co wspiera hipotezę mówiącą, że obiekty, które powstały z dala od Słońca, mogły być waźnym źródłem rozprzestrzeniania się życiodajnych molekuł po Układzie Słonecznym.
      Glavin i jego koledzy szukali molekuł niezbędnych do powstania życia. Tymczasem Tim J. McCoy, kurator zbiorów meteorytów z Narodowego Muzeum Historii Naturalnej, szukał na Bennu informacji o środowisku, w jakim molekuły te powstały. Wraz z zespołem informuje na łamach Nature o znalezieniu 11 minerałów, które powstają, gdy zawierające sole woda odparowuje przez długi czas, pozostawiając po sobie kryształy soli. Podobne co na Bennu solanki prawdopodobnie istnieją na planecie karłowatej Ceres oraz księżycu Saturna, Enceladusie.
      Naukowcy już wcześniej wykrywali na znalezionych na Ziemi meteorytach różne produkty takiego odparowywania, jednak dotychczas nie mieli okazji badać ostatecznych produktów takiego odparowywania trwającego przez tysiące lub więcej lat. Na Bennu znaleziono też kilka minerałów, w tym sodę naturalną, tzw. tronę, których nigdy wcześniej nie zaobserwowano na próbkach pochodzących spoza Ziemi.
      Badania dostarczają wielu nowych informacji, ale pozostawiają bez odpowiedzi liczne pytania. Niemal wszystkie aminokwasy są chiralne, a więc występują w dwóch wariantach, będących swoim lustrzanym odbiciem. Organizmy żywe na Ziemi wykorzystują wyłącznie konformację L- (są lewostronne). Tymczasem na Bennu występowały one w postaci mieszaniny racemicznej, czyli zawierającej równe ilości obu wariantów. To najprawdopodobniej oznacza, że na wczesnej Ziemi aminokwasy również występowały w postaci takich mieszanin. Zatem wciąż jest tajemniczą, dlaczego życie wybrało lewo-, a nie prawostronność.
      Misja OSIRIS-REx została wystrzelona w 2016 roku. W 2020 informowaliśmy, że padła ofiarą własnego sukcesu i pobrała tak dużo próbek, iż pojemnik się nie zamyka, więc NASA musi znaleźć awaryjne rozwiązanie problemu. Próbki trafiły na Ziemię w 2023 roku. W międzyczasie zaś, gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. W końcu zdecydowano, że pojazd poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej.
      Przemianowana na OSIRIS-APEX misja będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed 11 milionami lat w Marsa uderzyła asteroida, która wyrzuciła w przestrzeń kosmiczną fragmenty Czerwonej Planety. Jeden z tych fragmentów trafił na Ziemię i jest jednym z niewielu meteorytów, których pochodzenie można powiązać bezpośrednio z Marsem. Kto znalazł ten kawałek Marsa, nie wiadomo. Odkryto go w 1931 roku w jednej szuflad na Purdue University i nazwano Lafayette Meteorite, od miasta, w którym znajduje się uniwersytet. Nie wiadomo bowiem nawet, gdzie dokładnie meteoryt został znaleziony. Jednak jego stan zachowania wskazuje, że nie leżał na ziemi zbyt długo.
      Na kawałek skały jako pierwszy zwrócił uwagę dr O.C. Farrington, który zajmował się klasyfikacją kolekcji minerałów z uniwersyteckich zbiorów geologicznych. I to właśnie Farrington stwierdził, że skała uznana wcześniej za naniesioną przez lodowiec, jest meteorytem.
      Już podczas jednych z pierwszych badań Lafayette Meteorite naukowcy zauważyli, że na Marsie miał on kontakt z wodą w stanie ciekłym. Od tamtego czasu nie było jednak wiadomo, kiedy miało to miejsce. Dopiero teraz międzynarodowa grupa naukowa określiła wiek znajdujących się w meteorycie minerałów, które powstały w wyniku kontaktu z wodą. Wyniki badań zostały opublikowane na łamach Geochemical Perspective Letters.
      Profesor Marissa Tremblay z Purdue University wykorzystuje gazy szlachetne, jak hel, neon i argon, do badania procesów chemicznych i fizycznych kształtujących powierzchnię Ziemi. Uczona wyjaśnia, że niektóre meteoryty z Marsa zawierają minerały, które powstawały na Marsie w wyniku interakcji z wodą. Datowanie tych minerałów pozwoli nam więc stwierdzić, kiedy woda w stanie ciekłym istniała na powierzchni lub płytko pod powierzchnią Marsa. Datowaliśmy te minerały w Lafayette Meteorite i stwierdziliśmy, że powstały one 742 miliony lat temu. Nie sądzimy, by wówczas na powierzchni Marsa było zbyt dużo wody. Uważamy, że pochodziła ona z roztapiania się marsjańskiej wiecznej zmarzliny, a roztapianie się było spowodowane aktywnością magmy, do której sporadycznie dochodzi i dzisiaj, stwierdza uczona.
      Co ważne, naukowcy w trakcie badań wykazali, że ich datowanie jest wiarygodne. Na wiek minerałów mogło wpłynąć uderzenie asteroidy, która wyrzuciła z Marsa nasz meteoryt, ogrzewanie się meteorytu podczas pobytu przez 11 milionów lat w przestrzeni kosmicznej, czy też podczas podróży przez ziemską atmosferę. Wykazaliśmy, że żaden z tych czynników nie miał wpływu minerały w Lafayette, zapewnia Tremblay.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...