Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Badania DNA potwierdzają legendy dotyczące założycieli Imperium Inków

Recommended Posts

Peruwiańscy naukowcy sprawdziili, skąd wywodziła się elita Imperium Inków. Ricardo Fujita i Jose Sandoval z Uniwersytetu w Limie postanowili zweryfikować legendy, dotyczące pochodzenia Inków. Ich celem, jak sami mówią, było zidentyfikowania „protoplasty Inków”. To jak test na ojcostwo, ale nie pomiędzy ojcem a synem, a pomiędzy różnymi ludźmi, mówi Fujita.

Jedna z najpopularniejszych legend dotyczących pochodzenia Inków mówi, że para założycielska pochodziła z okolic jeziora Titicaca, a więc z regionu Puno, a druga twierdzi, że jeden z braci Ayar, Ayar Manco, założył Cusco i powołał do życia Imperium Inków. Fujita i Sandoval pobrali więc DNA od mieszkańców obu regionów i zaczęli je analizować. Po trzech latach badań współczesnych mieszkańców i śledzenia ich przodków możemy stwierdzić, że obie legendy wyjaśniają powstanie cywilizacji inkaskiej. Przeanalizowaliśmy DNA 3000 osób i dla każdej z nich stworzyliśmy drzewo genealogiczne. Później wybraliśmy spośród nich 200 osób, które miały najwięcej wspólnego DNA z inkaską elitą, mówi Fujita.

Na podstawie naszych badań doszliśmy do wniosku, że elita Tahuantinsuyu [państwa Inków – red.] wywodziła się z dwóch linii genetycznych. Jedna z nich pochodziła z regionu jeziora Titicaca, a druga z regionu góry Pacaritambo i Cusco. To potwierdza prawdziwość obu legend, dodaje Sandoval.

Zdaniem naukowców obie legendy mają ze sobą sporo wspólnego. Prawdopodobnie doszło najpierw do migracji z regionu Puno i migrujący ludzie na kilka dziesięcioleci osiedli w okolicach Pacaritambo, później założyli Cusco i państwo inkaskie, dodaje Sandoval.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Rogoząb australijski (Neoceratodus forsteri) to zwierzę o najdłuższym zsekwencjonowanym dotąd genomie. Ten najbardziej pierwotny gatunek ryby dwudysznej ma DNA wielokrotnie dłuższe od DNA człowieka. Należy do grupy mięśniopłetwych, które w dewonie wyszły na ląd i dały początek czworonogom.
      Siegfried Schloissnig i jego koledzy z austriackiego Instytutu Badawczego Patologii Molekularnej poinformowali, że genom rogozęba składa się z 43 miliardów par bazowych, czyli jest 14-krotnie dłuższy od genomu Homo sapiens. Jest też o 30% dłuższy od dotychczasowego rekordzisty, genomu axolotla, który został zsekwencjonowany w 2018 roku przez ten sam zespół naukowy.
      Podczas badań uczeni wykorzystali komputer o wysokiej wydajności, by poskładał analizowane fragmenty DNA w jedną całość. Genom rogozęba australijskiego był bowiem sekwencjonowany we fragmentach. Co więcej, by wyeliminować błędy, jakie wprowadza sekwencer, naukowcy użyli wielu kopii genomu. Złożeniem wszystkich części w całość zajął się komputer.
      Rogoząb australijski żyje w południowo-wschodnim Queensland. Zwierzę niewiele się zmieniło od czasu, kiedy przed milionami lat przeszło przeobrażenia umożliwiające mu oddychanie powietrzem atmosferycznym. Rogoząb ma dobrze rozwinięte płetwy piersiowe i brzuszne, które przypominają łapy. Ma też pojedyncze prymitywne płuco, przekształcone z pęcherza pławnego. W czasie suszy, gdy zanikają zbiorniki wodne, rogoząb oddycha powietrzem atmosferycznym.
      Dotychczas nie było jasne, czy z kręgowcami lądowymi jak ptaki i ssaki bliżej spokrewniony jest rogoząb czy też prymitywne ryby z rzędu celakantokształtnych, z których najbardziej znane są latimerie. Obecnie wykonana analiza jednoznacznie wykazała, że to rogozęby są bliżej spokrewnione ze zwierzętami czworonożnymi. Celakantokształtne oddzieliły się wcześniej, natomiast drogi rogozęba i linii ewolucyjnej, która dała początek lądowym czworonogom rozeszły się około 420 milionów lat temu.
      Żeby wyjść z wody, musisz przygotować się do życia na lądzie. Musisz być w stanie oddychać powietrzem oraz czuć zapachy, mówi Schloissnig. Uczony dodaje, że rogoząb jest podobny płazów pod względem liczby genów związanych z rozwojem płuc, kończyn oraz zdolności do odbierania zapachów z powietrza.
      Jeśli popatrzymy na rogozęba z perspektywy genetycznej, to znajduje się on w połowie drogi pomiędzy rybami a kręgowcami lądowymi, stwierdza uczony.
      Szczegóły pracy Austriaków poznamy na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ponad dekadę temu genetycy roślin zauważyli coś dziwnego. Badając szczepione rośliny stwierdzili, że w komórkach każdej z nich istnieją sygnały wskazujące, że doszło między nimi do wymiany dużych ilości DNA. Samo w sobie nie jest to niczym dziwnym, nie od dzisiaj wiemy o horyzontalnym transferze genów. Jednak w tym wypadku wydało się, że doszło do transferu całego nietkniętego genomu chloroplastów. To już była zagadka, gdyż komórki roślinne otoczone są ochronną ścianą i nie ma oczywistego sposobu wymiany tak dużej ilości DNA.
      Potrzeba było ponad 10 lat, by rozwiązać tę zagadkę. Naukowcy z Instytutu Molekularnej Fizjologii Roślin im. Maxa Plancka w Poczdamie zarejestrowali właśnie film dokumentujący taki transfer genów. Okazało się, nie tylko, że ściany komórkowe roślin są czasem bardziej porowate niż sądziliśmy, ale że istnieje mechanizm, dzięki całe organelle wędrują pomiędzy sąsiadującymi komórkami. Nowością jest tutaj wykazanie, że całe fizyczne organelle przemieszczają się pomiędzy komórkami. Dwie różne rośliny mogą wymienić organelle, mówi Charles Melnyk z Uniwersytetu Nauk Rolniczych w Uppsali.
      Szczepienie roślin jest stosowane co najmniej od czasów starożytnego Rzymu. Technika ta pozwala np. młodym roślinom na wcześniejsze owocowanie i poprawia ich odporność. Do zaszczepienia może też dojść w sposób naturalny.
      Przed około dekadą Ralph Bock z Instytutu Molekularnej Fizjologii Roślin, zaszczepił dwa gatunki tytoniu, a następnie zsekwencjonował geny rośliny z obu stron modzela, czyli miejsca połączenia roślin. Okazało się, że rośliny wymieniły całe genomy chloroplastów.
      Tego się nie można było spodziewać, mówi Pal Maliga, genetyk roślin z Rutgers University, który niezależnie znalazł dowody na transfer chloroplastów i mitochondriów. Komórki roślinne otoczone są sztywnymi ścianami, więc wyobrażałem sobie komórki roślinne jako cytoplazmę w klatce, z której nie może się wydostać, mówi Maliga.
      Dowody na wymianę dużej ilości materiału genetycznego stanowiły się prawdziwą zagadkę dla specjalistów. Jedynymi znanymi otworami w ścianie komórek roślinnych były niewielkie plazmodesmy, pomosty o średnicy około 0,05 mikrometra, dzięki którym sąsiadujące komórki mogą wymieniać proteiny i molekuły RNA. Tymczasem typowy chloroplast ma zaś średnicę około 5 mikrometrów. Jest więc zdecydowanie zbyt duży, by przedostać się przez plazmodesmę.
      Zagadkę udało się rozwiązać, gdy Bock rozpoczął współpracę z Alexandrem Hertlem, który specjalizuje się w obrazowaniu komórek w czasie rzeczywistym. Najpierw naukowcy zauważyli, że otwory w komórkach mogą mieć średnicę nawet 1,5 mikrometra. To jednak nadal zbyt mało, by przedostał się przez nie chloroplast. Naukowcy przyjrzeli się też komórkom w modzelu i wówczas zauważyli przemieszczający się chloroplast. Okazało się, że niektóre chloroplasty mogą zmieniać się w bardziej prymitywne proto-plastydy, których średnica może wynosić jedynie 0,2 mikrometra. Naukowcy ze zdumieniem obserwowali, jak takie proto-plastydy przemieszały się się w kierunku właśnie odkrytych większych otworów w ścianach komórkowych. Przeciskały się się przez nie i powracały do normalnych rozmiarów dla chloroplastów.
      Hertle przyznaje, że naukowcy nie rozumieją dobrze metamorfozy chloroplastów, jednak wydaje się, że jest to reakcja na niedobór węgla i zmniejszoną fotosyntezę. Gdy bowiem wyłączano światło, zaobserwowano aż 5-krotny wzrost transferu organelli.
      To, jak dobrze plastydy funkcjonują w nowej roślinie, zależy od tego, na ile rośliny są spokrewnione genetycznie. Im są sobie bliższe, tym lepiej plastydy działają.
      Maliga podejrzewa, że proto-plastydy mogą zawierać lub wytwarzać molekuły sygnałowe, które pomagają w leczeniu miejsca szczepienia. Wydaje się też, że powstające duże otwory w ścianach komórkowych również są efektem reakcji rośliny na szczepienie. Nie można jednak wykluczyć, że formują się też na którymś z etapów normalnego wzrostu rośliny, uważa uczony.
      Swoje badania naukowcy opisali na łamach Science Advances.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W czasie rozplanowywania budowli w słynnym Machu Picchu w Peru Inkowie stosowali dwa rodzaje miar. Jeden z nich opierał się na module wynoszącym 42 cm, drugi – 54 cm. Istnienia tego pierwszego naukowcy spodziewali się, drugi – jest niespodzianką.
      Takie ustalenia płyną z pracy doktorskiej dr inż. arch. Anny Kubickiej z Wydziału Architektury PWr, docenionej niedawno nagrodą Prezesa Rady Ministrów.
      Jak wyjaśnia dr Kubicka do tej pory badania systemu miar inkaskich opierały się głównie o XVI- i XVII-wieczne kroniki prowadzone przez Hiszpanów, którzy kolonizowali tamte tereny, oraz tworzone przez nich słowniki języka quechua, jakim posługiwali się Inkowie. W źródłach tych pojawiają się informacje o miarach antropometrycznych, czyli określanych na podstawie np. długości przedramienia. Nie było jednak wiadomo, jaka wartość była im przypisana.
      Naukowcy przypuszczali, że skoro przeciętny mieszkaniec imperium Inków mierzył około 1,6 m, to jego łokieć mógł mierzyć pomiędzy 40 a 45 cm. Nie było jednak dotąd badań, które polegałyby na analizie serii wymiarów budynków i ich elementów, pozwalającej poszukać tego podstawowego modułu – podkreśla dr Kubicka, cytowana w informacji przesłanej przez PWr.
      Dlatego badaczka przeprowadziła metrologiczne analizy, korzystając z pomiarów wykonanych w latach 2010-2017 w czasie badań terenowych w Machu Picchu. Pomiary w terenie prowadzili pracownicy Narodowego Parku Archeologicznego Machu Picchu razem z zespołem Laboratorium Skanowania i Modelowania 3D, kierowanym przez prof. Jacka Kościuka z PWr. Do jego zespołu dołączyła ówczesna doktorantka Anna Kubicka. Zespół prof. Kościuka rozpoczął prace w tym miejscu we współpracy z prof. Mariuszem Ziółkowskim z Ośrodka Badań Prekolumbijskich UW.
      Badaczka ustaliła, że do rozmierzania swoich budynków Inkowie stosowali dwa moduły (czyli quanta). Podstawowy miał 42 cm i odpowiadał długości łokcia. Drugi natomiast, mierzący 54 cm, jest nieznaną do tej pory miarą i nie wynika wprost z długości którejś części ludzkiego ciała. Kubicka określa go „łokciem królewskim”, bo była to jednostka używana do rozmierzania obiektów o wyższej randze. „Łokieć królewski” był powiązany z zespołami budynków reprezentacyjno-mieszkalnych, należących do elity inkaskiej. Natomiast ten drugi, podstawowy – z zespołami zabudowań gospodarczych, warsztatowych, dla służby yanaconas towarzyszącej elicie inkaskiej.
      Zapytana przez PAP, czy jej ustalenie wnosi coś nowego do poznania Machu Picchu – powiedziała, że kompleks ten powstał w jednym momencie - w I połowie XV w. Dlatego uzyskane przez nią dane metrologiczne nie są potrzebne do określenia np. jego wieku.
      Natomiast kwestią do zaobserwowania było to, czy występują różnice w module, wynikające z różnych tradycji budowlanych ludności, która przybywała jako siła robocza z różnych regionów imperium inkaskiego. Na Machu Picchu mamy różne style kamieniarskie, stosowane również w zależności od funkcji budynku lub zespołu budynków – opowiada PAP badaczka. Okazało się jednak, że mimo różnic w sposobie budowy stosowano jednak tylko dwa systemy miar. Kubicka uważa, że jest to dowód na to, że rozmierzanie planu miasta Machu Picchu było nadzorowane przez imperialnych inżynierów, którzy posługiwali się obowiązującym dla nich systemem miar.
      Czy zidentyfikowany przez dr Kubicką system miar stosowany był też w innych miejscach na terenie inkaskiego Peru? Jak mówi badaczka, odpowiedź na to pytanie przyniosą dalsze badania – do tej pory nikt nie przyjrzał się temu zagadnieniu. W jej ocenie nie można wykluczyć, że jednostki miary zmieniały się w czasie przed pojawieniem się Inków. Być może wraz z zapożyczeniem od kultury Tiwanaku technologii obróbki kamieniarskich przyjęto jeden wspólny system miar.
      Tematyka miar, proporcji, ustalonych reguł matematycznych w architekturze zawsze była dla mnie fascynującym tematem, niezależnie od kultury, kraju i czasu, a to zainteresowanie jeszcze na studiach inżynierskich zaszczepił we mnie prof. Jacek Kościuk, który później był jednym z promotorów mojej pracy – powiedziała Kubicka, zapytana o inspirację związaną z podjęciem się analiz.
      Do swoich analiz dr Kubicka wykorzystała metodę cosine quantogram, opracowaną przez brytyjskiego badacza Kendalla w 1974 r. do analizowania miar długości w megalitycznych konstrukcjach. W uproszczeniu polega ona na poszukiwaniu w serii danych pomiarowych niepodzielnej jednostki miary (czyli quantum), której wielokrotność stanowi długość poszczególnych elementów architektury.
      Badania w Machu Picchu były możliwe dzięki grantowi NCN.
      Obecnie wrocławska architektka kontynuuje swoje prace dotyczące systemu starożytnych miar. Teraz skupia się na analizach dotyczących świata śródziemnomorskiego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      DNA komórek macicy kobiet cierpiących na endometriozę wykazuje inne wzorce metylacji, niż DNA kobiet zdrowych, donoszą naukowcy z zespołu Lindy C. Giudice z Uniwersytetu Kalifornijskiego w San Francisco. Być może w przyszłości te różnice w metylacji będą używane do diagnozowania endometriozy i do rozwoju zindywidualizowanych planów leczenia pacjentek, mówi doktor Stuart B. Moss.
      Okazało się, że nie tylko istnieją różnice w metylacji pomiędzy kobietami zdrowymi a chorymi, ale różnice te widoczne są również w zależności od stopnia rozwoju choroby, a poddane metylacji regiony kodu genetycznego w różny sposób reagują na hormony związane z cyklem menstruacyjnym.
      Endometrioza to choroba, w wyniku której wyściółka macicy osadza się poza macicą. Jej komórki trafiają do jajników, pęcherza, osadzają się na jelitach czy organach wewnętrznych. Jednym z głównych jej objawów jest silny ból, szczególnie podczas miesiączkowania, kiedy to również złuszcza się nieprawidłowo osadzona tkanka i dochodzi do krwawień z miejsc, w których się ona znajduje. Endometrioza często powoduje bezpłodność, dochodzi również do uszkodzeń organów wewnętrznych, poważnych zaburzeń hormonalnych i wielodniowych epizodów olbrzymiego bólu.
      Podczas najnowszych badań naukowcy skupili się na fibroblastach zrębu błony śluzowej macicy. Komórki te regulują pracę komórek wyściełających macicę. Uczeni porównywali metylację w różnych regionach DNA oraz sprawdzili różnice w funkcjonowaniu genów w komórkach u kobiet, które nie mają endometriozy ani żadnej innej choroby ginekologicznej z kobietami z I i IV stadium endometriozy. Zbadali również, jak przebiega proces metylacji i jak działają genu po poddaniu komórek działaniu samego estradiolu, samego progesteronu oraz mieszanki obu hormonów. Poziomy hormonów dobrano tak, by odpowiadały one ich zmianom w czasie cyklu menstruacyjnego.
      Uczeni stwierdzili m.in., że widoczne różnice w metylacji i funkcjonowaniu genów pomiędzy I a IV stadium endometriozy mogą oznaczać, że mamy do czynienia z dwoma różnymi podtypami, a nie różnymi stadiami rozwoju choroby.
      Uzyskane przez nas dane wskazują, że prawidłowa interakcja hormonów oraz wzorce metylacji DNA są kluczowe, dla normalnego funkcjonowania macicy. Zmiany, jakie zaobserwowaliśmy, mogą odgrywać kluczową rolę w rozwoju bezpłodności, która często towarzyszy endometriozie, stwierdził główny autor badań, Sahar Houshdaran.
      Ze szczegółami badań można zapoznać się na łamach PLOS Genetics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół naukowców Uniwersytetu Warszawskiego pod kierunkiem dr hab. Joanny Kowalskiej opublikował na łamach czasopisma Nucleic Acids Research artykuł opisujący syntezę i zastosowanie fluorowanych cząsteczek DNA do badań funkcji i właściwości kwasów nukleinowych z wykorzystaniem fluorowego magnetycznego rezonansu jądrowego. Publikacja ta została uznana przez recenzentów za Breakthrough Paper – artykuł przełomowy dla rozwoju nauki.
      Zespół naukowców z Wydziału Fizyki UW oraz Centrum Nowych Technologii UW, który tworzą: dr hab. Joanna Kowalska, dr Marcin Warmiński, prof. Jacek Jemielity oraz Marek Baranowski, opublikował na łamach prestiżowego czasopisma naukowego Nucleic Acids Research (NAR) wyniki eksperymentów dotyczące syntezy i charakterystyki oligonukleotydów znakowanych atomem fluoru na jednym z końców nici kwasu nukleinowego (DNA) oraz ich zastosowań w badaniach metodą fluorowego jądrowego rezonansu magnetycznego (19F NMR).
      Opisane związki stanowią nowy rodzaj sond molekularnych do prostego wykrywania różnych wariantów przestrzennych DNA (tzw. struktur drugorzędowych), takich jak fragmenty dwuniciowe (dupleksy), a także bardziej nietypowe struktury – tzw. struktury niekanoniczne (G-kwadrupleksy i i-motywy). Znakowane fluorem fragmenty DNA umożliwiają badanie tych struktur za pomocą wrażliwej na zmiany strukturalne metody, jaką jest spektroskopia 19F NMR.
      Publikacja badaczy Uniwersytetu Warszawskiego otrzymała od recenzentów czasopisma Nucleic Acids Research status Breakthrough Paper – artykułu przełomowego dla rozwoju nauki. Recenzenci docenili połączenie prostego i wydajnego podejścia syntetycznego, umożliwiającego otrzymanie fluorowanych cząsteczek DNA, z wykorzystaniem metody 19F NMR. Połączenie to zaowocowało opracowaniem metody badawczej o szerokim spektrum zastosowań: od śledzenia zmian strukturalnych dupleksów DNA do monitorowania oddziaływań pomiędzy kwasem nukleinowym, a białkami i małymi cząsteczkami.
      Rezultaty opisane w publikacji otwierają nowe możliwości w badaniach poznawczych kwasów nukleinowych, a także mogą znaleźć zastosowanie w odkrywaniu leków oddziałujących, poprzez specyficzne wiązanie, z określonymi sekwencjami lub strukturami przestrzennymi w DNA. Większość opracowywanych dotychczas leków działa poprzez oddziaływanie z białkami. Leki oddziałujące z DNA są natomiast mało selektywne, a przez to toksyczne. Opracowanie metod umożliwiających odkrywanie cząsteczek oddziałujących tylko z wybranymi sekwencjami DNA otwiera drogę do powstania leków charakteryzujących się znacznie mniejszą toksycznością – komentuje dr hab. Joanna Kowalska z Wydziału Fizyki UW, współautorka artykułu.
      Nucleic Acids Research to czasopismo naukowe, którego celem jest popularyzacja najwyższej jakości badań, których rezultaty oceniane są przez grono naukowców-recenzentów w zakresie biologii molekularnej i komórkowej. Status Breakthrough Paper otrzymują publikacje opisujące badania, które rozwiązują istniejący od dawna problem lub wskazują nowe możliwości i kierunki rozwoju nauki.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...