Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

TESS w kosmosie

Recommended Posts

Dzisiaj, 51 minut po północy czasu polskiego, wystrzelono misję TESS. Pojazd, którego zadaniem jest poszukiwanie pobliskich planet pozasłonecznych podobnych do Ziemi, wystartował w Przylądka Canaveral na pokładzie rakiety Falcon 9.

Przez najbliższych kilka tygodni TESS będzie stopniowo zmieniał swoją orbitę tak, by ostatecznie osiągnęła ona apogeum 400 000 kilometrów. Wówczas, dzięki asyście grawitacyjnej Księżyca pojazd znajdzie się na swojej docelowej orbicie. Czas obiegu TESS wokół Ziemi będzie wówczas wynosił 13,7 doby, a jego rezonans z Księżycem będzie miał wartość 2:1, co oznacza, że średnie zakłócenia ruchu TESS spowodowane obecnością Księżyca będą bliskie zeru. Na tak stabilnej orbicie TESS pozostanie przez kilkadziesiąt lat. Uzyskanie takiej właśnie orbity jest ważne dla pojazdu, który jest bardzo ograniczony co do masy, więc nie mógł zabrać na pokład zbyt wiele paliwa dla silników manewrujących. TESS niemal nie będzie musiał wykonywać manewrów korygujących orbitę.

Po osiągnięciu docelowej orbity nastąpi 60-dniowy okres uruchamiania i testowania urządzeń, po którym TESS rozpocznie właściwą część swojej misji.

Oczywiście misja TESS nie została zaplanowana na kilkadziesiąt lat. Pojazd ma pracować przez dwa lata. W tym czasie będzie obserwował 200 000 najjaśniejszych bliskich Słońcu gwiazd,  poszukując w ich pobliżu planet. Naukowcy szacują, że TESS odnajdzie wiele tysięcy planet, z czego około 300 będą to planety nie większe niż dwukrotna średnica Ziemi. Staną się one celem przyszłych misji badawczych.

"Planety, które znajdzie TESS, będą wspaniałym celami badawczymi w kolejnych dekadach. To początek nowej epoki badań nad egzoplanetami", powiedział Stephen Rinehart z Goddard Flight Center.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Testy żagla słonecznego oraz badania zewnętrznych warstw atmosfery Ziemi będą dwiema misjami, które zostaną zabrane „autostopem” przy okazji misji IMAP (Interstellar Mapping and Acceleration Probe). Urządzenia typu SmallSat trafią w przestrzeń kosmiczną dzięki temu, że IMAP nie wykorzysta całych możliwości rakiety nośnej. Ich wybór to jednocześnie początek realizacji przez NASA „naukowego autostopu” o nazwie RideShare.
      Wspomniane małe misje to GLIDE (Global Lyman-alpha Imagers of the Dynamic Exosphere), w ramach której badany będzie obszar, gdzie atmosfera styka się z przestrzenią kosmiczną, oraz Solar Cruiser, misja testowa żagla słonecznego.
      Zostaną one wystrzelone wraz z IMAP w 2025 roku. Sonda IMAP zostanie umieszczona w punkcie libracyjnym L1 i stamtąd będzie badała przyspieszenie cząstek pochodzących z heliosfery oraz interakcję wiatru słonecznego z lokalnym medium. Dane będą przesyłane na Ziemię w czasie rzeczywistym i posłużą do prognozowania pogody kosmicznej.
      W ramach projektu RideShare NASA ma zamiar wykorzystywać nadmiarową moc rakiet nośnych używanych przy dużych misjach do zabierania na ich pokład mniejszych urządzeń, na przykład typu SmallSat. To zwiększy możliwości badawcze i ułatwi organizowanie niewielkich misji naukowych.
      GLIDE ma uzupełnić nasze luki w wiedzy na temat egzosfery. Dysponujemy co prawda wykonanymi w ultrafiolecie zdjęciami tego obszaru, ale wszystkie one zostały zrobione spoza egzosfery. GLIDE ma obserwować całą egzosferę, dostarczając globalnych i spójnych danych na jej temat. Badania, w jaki sposób Słońce wpływa na najbardziej zewnętrzne warstwy atmosfery, pozwolą na zrozumienie wpływu naszej gwiazdy na systemy telekomunikacyjne oraz opracowanie technik, pozwalających na uniknięcie zakłóceń ze strony Słońca. Główną badaczką misji jest Lara Waldrop z University of Illinois at Urbana-Champaign, a budżet GLIDE wynosi 75 milionów USD.
      Z kolei Solar Cruiser to typowa misja testowa nowej technologii. W jej skład wchodzi żagiel słoneczny o powierzchni 1700 m2, a celem misji będzie wykazanie przydatności tego typu urządzeń do napędzania pojazdów z wykorzystaniem promieniowania słonecznego. Odpowiedzialnym za ten projekt jest Les Johnson z Marshall Space Flight Center, a budżet misji to 65 milionów USD.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po 8-miesięcznym milczeniu NASA ponownie skontaktowała się ze znajdującą się na krawędziach Układu Słonecznego sondą Voyager 2. Brak kontaktu spowodowały był remontem i rozbudową anteny, która służy do komunikacji z Voyagerem.
      Prace na 70-metrowej antenie trwały od połowy marca. W końcu 29 października wysłano serię komend, a Voyager 2 potwierdził ich otrzymanie i wykonał je bez najmniejszego problemu.
      Komendy były testem Deep Space Station 43, jedynej anteny, która służy do komunikacji z Voyagerem 2. Urządzenie znajduje się w Australii i jest częścią Deep Space Network. To należąca do NASA sieć anten do komunikacji radiowej z pojazdami znajdującymi się poza orbitą Księżyca. Po wyłączeniu Deep Space Station 43 operatorzy Voyager 2 mogli jedynie otrzymywać od niego dane naukowe oraz informacje dotyczące stanu pojazdu. Nie byli jednak w stanie wysłać żadnej komendy.
      W ramach rozbudowy DSS43 została wyposażona w dwa nowe nadajniki. Jeden z nich, ten używany do wysyłania komend, zastąpił stary nadajnik sprzed 47 lat. Wymieniono też podzespoły ogrzewające i chłodzące, elementy związane z dostarczaniem energii i wiele innych części anteny.
      Udany test komunikacji z 29 października daje nadzieję, że zgodnie z planem DSS43 powróci do normalnej pracy w lutym przyszłego roku.
      Deep Space Network składa się z anten znajdujących się w Australii (Canberra), USA (Goldstone w Kalifornii) i Hiszpanii (Madryt). Takie ich rozmieszczenie gwarantuje, że niemal każdy pojazd, który znajduje się w prostej linii od Ziemi, ma przez cały czas łączność przynajmniej z jedną anteną.
      Voyager 2 jest tutaj rzadkim wyjąkiem. Aby dokonać przelotu w pobliżu Trytona, księżyca Neptuna, sonda musiała przelecieć nad biegunem północnym planety. Taka trajektoria spowodowała, że przesunęła się na południe względem płaszczyzny orbity planet i cały czas zmierza w tym kierunku. To wciąż pogłębiające się odchylenie na południe powoduje, że Voyager 2 nie jest już widoczny dla anten z Półkuli Północnej. Kontakt z nim ma zatem wyłącznie antena z Australii.
      DSS43 to jedyna antena na Półkuli Południowej, która ma wystarczająco dużą moc, by wysyłać komendy do Voyagera 2. Jego bliźniak, Voyager 1, obrał inną drogę za Saturnem, jest więc widoczny dla obu anten z Półkuli Północnej.
      W czasie, gdy DSS43 nie mogła wysyłać komend do Voyagera 2, informacje nadchodzące z tej sondy były odbierane przez trzy 34-metrowe anteny w Canberze.
      DSS43 rozpoczęła pracę w 1972 roku, na 5 lat przed wystrzeleniem Voyagerów. Wówczas miała średnicę 64 metrów. W roku 1987 zwiększono ją do 70 metrów. Od tamtego czasu urządzenie było wielokrotnie rozbudowywane i naprawiane. Jednak obecna praca były najbardziej znaczącymi i wiązały się z najdłuższym wyłączeniem anteny od ponad 30 lat.
      DSS43 to wysoce wyspecjalizowany system. Na całym świecie są tylko dwie podobne anteny, więc wyłączenie jednej z nich to nie jest najlepsza sytuacja dla Voyagera i wielu innych misji NASA. Jednak musimy podejmować takie decyzje, by móc obsługiwać obecne i przyszłe misje. W przypadku urządzenia, które liczy sobie niemal 50 lat, trzeba być proaktywnym. Nie można czekać, aż coś się zepsuje, mówi Philip Baldwin z NASA.
      Z Deep Space Network korzystają liczne misje. Najnowsza rozbudowa przyda się m.in. podczas obecnych i planowanych misji na Marsa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na wielu planetach pozasłonecznych panują ekstremalne warunki. Znamy takie, gdzie z nieba spada szkło czy płynne żelazo. Teraz międzynarodowy zespół naukowy poinformował o tym, co dzieje się na planecie K2-141b. Z przeprowadzonych symulacji komputerowych wynikach, że powierzchnia planety, jej oceany i atmosfera składają się z tego samego budulca – ze skał.
      Ta planeta wielkości Ziemi znajduje się tak blisko swojej gwiazdy macierzystej, że dochodzi tam do odparowywania i skarplania się skał, prędkość wiatrów dochodzi tam do 5000 km/h, a na K2-141b istnieje ocean magmy o głębokości 100 kilometrów.
      Naukowcy z McGill University, York University oraz Indyjskiego Instytutu Edukacji Naukowej odkryli, że 2/3 planety jest ciągle oświetlone przez jej gwiazdę. Po stronie nocnej temperatura wynosi -200 stopni Celsjusza, po dziennej zaś dochodzi do 3000 stopni. To wystarczy, by rozpuścić i odparować skały. Ze skał tych tworzy się cienka atmosfera.
      Zjawiska zachodzące na K2-141b przypominają obieg wody na Ziemi. Z tym, że tam jest to obieg skał. Skały odparowują, potężne wiatry wiatry przenoszą je na ciemną stronę, gdzie dochodzi do kondensacji i opadów. Cały cykl nie jest jednak tak stabilny jak obieg wody na Ziemi. Magmowy ocean wolno przemieszcza się ze strony ciemnej na jasną. Naukowcy przewidują, że prowadzi to do zmiany składu mineralnego, co z czasem spowoduje zmiany w powierzchni i atmosferze K2-141b.
      Wszystkie skaliste planety podobne do Ziemi rozpoczynały swe życie jako magmowe światy roztopionych skał. Potem szybko ostygły i utworzyły stałe lądy. Lawowe planety dają nam wgląd w ten etap ewolucji, mówi profesor Nicolas Cowan z McGill.
      Uczeni chcą teraz zweryfikować wyniki swoich symulacji. Obecnie analizują dane z Teleskopu Kosmicznego Spitzera. W ten sposób zweryfikują wyniki obliczeń temperatury dla strony dziennej i nocnej K2-141b. Mają nadzieję, że w niedalekiej przyszłości będą mogli użyć danych z Teleskopu Kosmicznego Jamesa Webba, który ma zostać wystrzelony w przyszłym roku, co pozwoli im na sprawdzenie, czy atmosfera K2-141b zachowuje się tak, jak wynika z ich obliczeń.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwykle zastanawiamy się, ile pozasłonecznych planet zawierających życie jesteśmy w stanie zaobserwować z Ziemi. Jednak pytanie to można odwrócić. I właśnie to zrobili profesorowie Lisa Kaltenegger z Cornell University i Joshua Pepper z Lehigh University. Postanowili oni zbadać, z ilu układów planetarnych można bezpośrednio obserwować Ziemię. Innymi słowy, ile potencjalnych cywilizacji pozaziemskich, znajdujących się na podobnym etapie rozwoju, może nas badać.
      Uczeni zidentyfikowali 1004 gwiazdy ciągu głównego, czyli dość podobne do Słońca, które mogą posiadać podobne do Ziemi planety w ekosferze. Wszystkie wspomniane gwiazdy znajdują się w promieniu 300 lat świetlnych od Ziemi, zatem w odległości, z której obca cywilizacja powinna być w stanie wykryć chemiczne sygnatury życia w ziemskiej atmosferze.
      Odwróćmy nasz punkt widzenia. Przenieśmy się na inne planety i zapytajmy, z których układów planetarnych można obserwować tranzyty Ziemi na tle Słońca, mówi Kaltenegger. Uczona przypomina, że obserwowanie tranzytów to kluczowy sposób obserwowania planet pozasłoneczych i określania ich cech charakterystycznych. Już wkrótce, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST), będziemy w stanie – badając tranzyty – określać skład chemiczny atmosfer planet spoza Układu Słonecznego. Jeśli z naszego punktu widzenia jakaś planeta przechodzi na tle swojej gwiazdy, zatem znajduje się w linii prostej pomiędzy swoją gwiazdą a Ziemią, to już teraz – badając zmianę jasności gwiazdy przesłoniętej przez planetę – próbujemy określać np. wielkość planety. Instrument taki jak JWST pozwoli badać światło gwiazdy przechodzące przez atmosferę planety i określić skład chemiczny tej planety. Będziemy więc mogli wykrywać w niej molekuły i inne elementy wskazujące na istnienie życia. To samo jednak mogą robić potencjalne cywilizacje pozaziemskie.
      Jedynie niewielki ułamek egzoplanet przechodzi na tle swojej gwiazdy z naszego punktu widzenia. Z punktu widzenia wszystkich zidentyfikowanych przez nas układów Ziemia przechodzi na tle Słońca. A to powinno przyciągnąć uwagę potencjalnych obserwatorów. Jeśli poszukujemy inteligentnego życia, które może nas znaleźć i zechcieć nawiązać kontakt, to właśnie stworzyliśmy mapę, gdzie należy szukać, dodaje Kaltenegger.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na trzy sekundy przed startem odwołano wystrzelenie satelity szpiegowskiego NROL-44. Satelita miał zostać wystrzelony za pomocą rakiety Delta IV Heavy. Dosłownie w ostatniej chwili przed startem pojawiły się problemy. Na załączonym filmie widać duży płomień.
      Na szczęście nie doszło do katastrofy. Silniki wyłączono, a start został odwołany.
      Start United Launch Alliance Delta IV Heavy z misją NROL-44 realizowaną na zlecenie Narodowego Biura Rekonesansu, został odwołany w związku z niespodziewanym wydarzeniem, do którego doszło na trzy sekundy przed startem, oświadczyli przedstawiciele ULA. Zespół specjalistów analizuje dane i określi dalsze kroki. Minimalny czas oczekiwania przed kolejnym startem wynosi 7 dni.
      Prezes ULA Tory Bruno oświadczył, że zarówno rakieta jak i ładunek są w dobrym stanie. Doszło do automatycznego wyłączenia silników podczas sekwencji startowej. Wydaje się że problem pojawił się w systemie naziemnym. Wszystko zadziałało jak należy i udało się uchronić pojazd oraz ładunek.
      Delta IV Heavy to najpotężniejsza rakieta ULA, czyli konsorcjum założonego przez Boeinga i Lockheeda Martina. Może ona wynieść na niską orbitę okołoziemską ładunek o masie do 28 370 kg, a na orbitę stacjonarną – do 13 810 kg.
      To już drugie opóźnienie tajnej misji NROL-44. Pierwotnie start planowano na 27 sierpnia, jednak przełożono go w związku z problemami ze sprzętem na stanowisku startowym.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...