Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Terapia luksusem
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Około 250 roku na terenie Japonii pojawił się nowy zwyczaj grzebalny. Mieszkańcy wysp zaczęli konstruować wielokomorowe kurhany, tzw. kofun. W mieście Sakai w prefekturze Osaka znajduje się największy z japońskich kurhanów - Daisen-ryo kofun. To prawdopodobnie grobowiec Nintoku, 16. cesarza Japonii. Otoczony trzema fosami kurhan w kształcie dziurki od klucza ma 486 metrów długości, jego tylna część ma 249 metrów średnicy, a wysokość sięga 36 metrów. Na teren kurhanu nie wolno wchodzić, nie prowadzi się w nim też prac archeologicznych. A mimo to pojawiły się przedmioty, zabrane z grobowca przed 150 laty.
W kwietniu 1872 roku podczas prac porządkowych na terenie Daisen-ryo kofun zauważono, że w wyniku osunięcia się ziemi doszło do odsłonięcia komory grobowej zawierającej sarkofag. Na miejsce wysłano Kashiwagigo Kaichiro, architekta specjalizującego się w budowie pawilonów herbacianych, uznanego kolekcjonera starożytności i eksperta ds. sztuki. Kaichiro sporządził plany i rysunki, na których widać komorę grobową i duży sarkofag, wewnątrz którego znaleziono m.in. złoconą zbroję, szklane naczynia, żelazne miecze. Po oględzinach komora została zasypana.
Okazuje się jednak, że Kaichiro zabrał z grobowca niewielki pozłacany nożyk i fragmenty zbroi. Przez lata znajdowały się one w jego prywatnej kolekcji, a po jego śmierci w 1898 roku przeszły na własność Masudy Takashiego, urzędnika z Ministerstwa Finansów, a później przedsiębiorcy związanego z koncernem Mitsui, dla którego zlecenia wykonywał też Kaichiro. Takashi zlecił też Kaichiro budowę pawilonu herbacianego w swoim domu. Przejął też od niego wiele dzieł sztuki, w tym zwoje, które później uznano za skarby narodowe. Gdy zaś Masuda Takashi zmarł w 1938 roku, przedmioty z cesarskiego grobu krążyły wśród kolekcjonerów, aż zostały kupione przez Muzeum Uniwersytetu Kokugakuin. Dzięki temu stały się znane opinii publicznej i można było je zbadać.
Do muzeum trafiły małe fragmenty złoconej miedzi, które nakładano na żelazną zbroję, oraz rytualny nożyk. Analizy fragmentów zbroi wykazały obecność miedzi, złota, rtęci i żelaza. Zachowany fragment nożyka ma 10,5 cm długości i 2,2 cm szerokości. Całość miała około 15 cm. długości. Zabytek znajduje się w pochwie z drewna cyprysika tępołuskowego, która została obita miedzią pozłacaną amalgamatem (Cu, Au, Hg), a jej brzegi wzmocniono srebrnymi nitami. Grubość złocenia wynosi zaledwie 0,5 milimetra, co wskazuje na wysoki poziom zaawansowania technologicznego.
Przedmioty datowane są na 2. połowę V wieku. Prawdopodobnie zostały wykonane na zlecenie rodziny cesarskiej. Sam kurhan był prawdopodobnie budowany i używany przez dłuższy czas, a pochówki następowały tam w różnych latach.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Northwestern University powstało pierwsze ubieralne urządzenie, które bada gazy emitowane i absorbowane przez skórę. Analiza tych gazów to zupełnie nowy sposób na badanie zdrowia skóry, w tym monitorowania ran, wykrywania infekcji, badanie poziomu nawodnienia czy ekspozycji na szkodliwe wpływy środowiskowe. W skład urządzenia wchodzą czujniki temperatury, pary wodnej, dwutlenku węgla i lotnych związków organicznych.
Gazy ze skóry przepływają do niewielkiej komory, która znajduje się nad skórą, nie dotykając jej. Dzięki takiej architekturze zyskujemy pewność, że w miejscu, z którego pochodzą gazy, skóra nie została zaburzona przez kontakt z samym urządzeniem.
Urządzenie to naturalne rozwinięcie naszego laboratoryjnego urządzenia, które zbierało i analizowało pot. Tamto urządzenie badało pot w celu określenia stanu zdrowia. Urządzenie to, mimo że użyteczne, wymagało farmakologicznego stymulowania gruczołów potowych lub wystawienia skóry na gorące, wilgotne środowisko. Zaczęliśmy więc zastanawiać się, co jeszcze możemy przechwycić ze skóry, a co występuje tam naturalnie i cały czas. Stwierdziliśmy, że warunki te spełniają substancje wydobywające się z powierzchni – para wodna, dwutlenek węgla i lotne substancje organiczne – które można łączyć ze zdrowiem, stwierdza współautor badań John A. Rogers.
Nasza technologia może zmienić sposób opieki zdrowotnej, szczególnie u noworodków, osób starszych, pacjentów z cukrzycą i innych z uszkodzoną skórą. Piękno naszego urządzenia polega na tym, że znaleźliśmy całkowicie nowy sposób oceny delikatnej skóry na której występują rany, wrzody czy otarcia. Urządzenie to jest pierwszym ważnym krokiem w kierunku pomiarów wymiany gazów i skorelowania wyników tych pomiarów ze zmianami w stanie skóry, dodaje Gullermo A. Ameer.
Śledząc zmiany w wymianie gazów i pary wodnej przez skórę, można zyskać wgląd w stan skóry i jego zmiany. Złotym standardem badania integralności skóry jest wielki instrument z próbnikiem, który co jakiś czas dotyka skóry w celu zebrania informacji o utracie wody przez skórę. Wielką zaletą jest posiadanie urządzenia, które zdalnie i ciągle – lub w sposób zaprogramowany – bez zaburzania snu pacjenta, jest w stanie mierzyć utratę wody przez skórę, mówi Amy S. Paller.
Wspomniane urządzenie ma 2 centymetry długości i 1,5 centymetra szerokości. Składa się z komory, czujników, układów elektronicznych i niewielkiej baterii. Komora, w której zbierają się gazy, znajduje się kilka milimetrów nad skórą. Tradycyjne urządzenia opierają się na fizycznym kontakcie ze skórą, ograniczając użycie w niektórych sytuacjach, takich jak uszkodzenia skóry. Nasze urządzenie radzi sobie z tym ograniczeniem, stwierdza Rogers.
Urządzenie wyposażone zostało wyposażone w moduł Bluetooth, za pośrednictwem którego dane są wysyłane do użytkownika, który może na bieżąco się z nimi zapoznawać czy pokazać je lekarzowi.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Uniwersytecie Stanforda powstała rewolucyjna technika obrazowania struktur wewnątrz organizmu. Polega ona na uczynieniu skóry i innych tkanek... przezroczystymi. Można tego dokonać nakładając na skórę jeden z barwników spożywczych. Testy na zwierzętach wykazały, że proces jest odwracalny. Technika taka taka, jeśli sprawdzi się na ludziach, może mieć bardzo szerokie zastosowanie – od lokalizowania ran, poprzez monitorowanie chorób układu trawienia, po diagnostykę nowotworową.
Technologia ta może uczynić żyły lepiej widocznymi podczas pobierania krwi, ułatwić laserowe usuwanie tatuaży i pomagać we wczesnym wykrywaniu i leczeniu nowotworów, mówi Guosong Hong. Na przykład niektóre terapie wykorzystują lasery do usuwania komórek nowotworowych i przednowotworowych, ale ich działanie ograniczone jest do obszaru znajdującego się blisko powierzchni skóry. Ta technika może poprawić penetrację światła laserowego, dodaje.
Przyczyną, dla której nie możemy zajrzeć do wnętrza organizmu, jest rozpraszanie światła. Tłuszcze, płyny, białka, z których zbudowane są organizmy żywe, rozpraszają światło w różny sposób, powodując, że nie jest ono w stanie penetrować ich wnętrza, więc są dla nas nieprzezroczyste. Naukowcy ze Stanforda stwierdzili, że jeśli chcemy, by materiał biologiczny stał się przezroczysty, musimy spowodować, żeby wszystkie budujące go elementy rozpraszały światło w ten sam sposób. Innymi słowy, by miały taki sam współczynnik załamania. A opierając się na wiedzy z optyki stwierdzili, że barwniki najlepiej absorbują światło i mogą być najlepszym ośrodkiem, który spowoduje ujednolicenie współczynników załamania.
Szczególną uwagę zwrócili na tartrazynę czyli żółcień spożywczą 5, oznaczoną symbolem E102. Okazało się, że mieli rację. Po rozpuszczeniu w wodzie i zaabsorbowaniu przez tkanki, tartrazyna zapobiegała rozpraszaniu światła. Najpierw barwnik przetestowano na cienkich plastrach kurzej piersi. W miarę, jak stężenie tartrazyny rosło, zwiększał się współczynnik załamania światła w płynie znajdującym się w mięśniach. W końcu zwiększył się do tego stopnia, że był taki, jak w białkach budujących mięśnie. Plaster stał się przezroczysty.
Później zaczęto eksperymenty na myszach. Najpierw wtarli roztwór tartrazyny w skórę głowy, co pozwoliło im na obserwowanie naczyń krwionośnych. Później nałożyli go na brzuch, dzięki czemu mogli obserwować kurczenie się jelit i ruchy wywoływane oddychaniem oraz biciem serca. Technika pozwalała na obserwacje struktur wielkości mikrometrów, a nawet polepszyła obserwacje mikroskopowe. Po zmyciu tartrazyny ze skóry tkanki szybko wróciły do standardowego wyglądu. Nie zaobserwowano żadnych długoterminowych skutków nałożenia tartrazyny, a jej nadmiar został wydalony z organizmu w ciągu 48 godzin. Naukowcy podejrzewają, że wstrzyknięcie barwnika do tkanki pozwoli na obserwowanie jeszcze głębiej położonych struktur organizmu.
Badania, w ramach których dokonano tego potencjalnie przełomowego odkrycia, rozpoczęły się jako projekt, którego celem jest sprawdzenie, jak promieniowanie mikrofalowe wpływa na tkanki. Naukowcy przeanalizowali prace z dziedziny optyki z lat 70. i 80. ubiegłego wieku i znaleźli w nich dwa podstawowe narzędzia, które uznali za przydatne w swoich badaniach: matematyczne relacje Kramersa-Kroniga oraz model Lorentza. Te matematyczne narzędzia rozwijane są od dziesięcioleci, jednak nie używano ich w medycynie w taki sposób, jak podczas opisywanych badań.
Jeden z członków grupy badawczej zdał sobie sprawę, że te same zmiany, które czynią badane materiały przezroczystymi dla mikrofal, można zastosować dla światła widzialnego, co mogłyby być użyteczne w medycynie. Uczeni zamówili więc sięc silne barwniki i zaczęli dokładnie je analizować, szukając tego o idealnych właściwościach optycznych.
Nowatorskie podejście do problemu pozwoliło na dokonanie potencjalnie przełomowego odkrycia. O relacjach Kramersa-Kroniga uczy się każdy student optyki, w tym przypadku naukowcy wykorzystali tę wiedzę, do zbadania, jak silne barwniki mogą uczynić skórę przezroczystą. Podążyli więc w zupełnie nowym kierunku i wykorzystali znane od dziesięcioleci podstawy do stworzenia nowatorskiej technologii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
U wybrzeży Japonii znaleziono amerykański okręt podwodny USS Albacore, który zaginął 7 listopada 1944 roku. Amerykańska Naval History and Heritage Command (NHHC) potwierdziła tożsamość wraku na podstawie zdjęć dostarczonych przez doktora Tamakiego Urę z Uniwersytetu Tokijskiego, którego zespół odkrył wrak.
Pragniemy szczerze podziękować i pogratulować doktorowi Urze i jego zespołowi zlokalizowania wraku Albacora. To dzięki ich ciężkiej pracy udało się potwierdzić miejsce spoczynku naszych żołnierzy, którzy oddali życie w obronie ojczyzny, powiedział dyrektor NHHC, kontradmirał Samuel J. Cox.
Zespół doktora Ury wykorzystał podczas poszukiwań informacje z japońskich archiwów do określenia obszaru, w którym należy poszukiwać zaginionego okrętu. Japończycy wykorzystali zdalnie sterowany pojazd podwodny. Praca była bardzo trudna ze względu na silne prądy, roślinność morską oraz słabą widoczność. Mimo to udało się trafić na wrak i wykonać zdjęcia. Pozostało więc sprawdzić, czy rzeczywiście mamy do czynienia z USS Albacore.
Identyfikację ułatwił fakt, że przed swoim ostatnim patrolem jednostka przeszła kilka modyfikacji, w tym radaru i masztu. To dzięki nim, mimo słabej jakości zdjęć, możliwe było rozpoznanie jednostki na podstawie zachowanej dokumentacji.
Wrak USS Albacore jest, zgodnie z prawem międzynarodowym, chroniony przez prawo USA i znajduje się pod jurysdykcją NHHC. Dopuszczalne są jego zdalne badania, ale wszelkie prace związane lub potencjalnie związane z naruszeniem okrętu muszą być uzgadniane i prowadzone przez NHHC. Ponadto wrak jest też cmentarzem wojennym.
USS Albacore wszedł do służby 1 czerwca 1942 roku. Okręt klasy Gato odbył 11 patroli bojowych, w czasie których na pewno zatopił 10 wrogich jednostek – w tym 6 okrętów wojennych. Na jego konto być może należy przypisać 3 kolejne, niepotwierdzone zatopienia. Dotychczas było wiadomo, że okręt zaginął 7 listopada 1944 roku u wybrzeży Hokkaido, prawdopodobnie po wpłynięciu na minę.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Od kiedy na całym świecie, w związku z epidemią COVID-19, gwałtownie wzrosło zapotrzebowanie na maseczki, pojawiły się problemy z zapewnieniem tego środka ochronnego pracownikom służby zdrowia. Stąd też apele, o noszenie własnoręcznie wykonanych maseczek. Amerykańskie Towarzystwo Chemiczne informuje na łamach swojego pisma ACS Nano, że maseczkę najlepiej wykonać z połączenia bawełny i syntetycznego szyfonu. Najlepiej odfiltruje ona aerozole.
Najdrobniejsze z wydychanych przez nas cząstek z łatwością prześlizgują się przez różne tkaniny. Stąd też rodzi się pytanie, z jakich materiałów powinna być wykonana maseczka domowej roboty. Postanowił na nie odpowiedzieć Supratik Guha i jego koledzy z University of Chicago.
Naukowcy wykorzystali specjalną komorę do mieszania aerozoli, w której wytwarzali cząstki wielkości od 10 nm do 6 mn. Wentylator kierował aerozole w stronę tkaniny, a zespół sprawdzał, liczbę i rozmiary cząstek aerozoli, które przedostały się przez tkaniny. Okazało się, że najlepszym rozwiązaniem jest połączenie jednej warstwy gęstej bawełny z dwiema warstwami szyfonu. W badaniu użyto szyfonu składającego się w 90% z poliestru i 10% z lycry. Taka maseczka zatrzymuje – w zależności od wielkości cząstek – od 80 do 99 procent aerozolu.
Szyfon można zastąpić naturalnym jedwabiem lub flanelą i całość sprawdzi się niemal równie dobrze.
Naukowcy wyjaśniają, że gęsto utkany materiał, jak bawełna, działa jak bariera mechaniczna. Z kolei szyfon czy naturalny jedwab, które przechowują statyczne ładunki elektryczne, działają jak bariera elektrostatyczna.
Najważniejsze jest jednak dokładne zakładanie maseczki. Jej niewłaściwe założenie, gdy powietrze będzie uciekało bokiem, zmniejsza skuteczność maseczki nawet o 60%.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.