Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Czarne dziury przyspieszają strumienie wodoru

Rekomendowane odpowiedzi

Naukowcom z University of Sheffield udało się rozwiązać jedną z zagadek ewolucji galaktyk. Zauważyli oni, że supermasywne czarne dziury znajdujące się w centrach niektórych galaktyk przyspieszają olbrzymie strumienie wodoru molekularnego wydobywające się z galaktyki. Jako, że wodór jest potrzebny do formowania się gwiazd, zjawisko powyższe ma bezpośredni wpływ na ewolucję galaktyk.
Ucieczka wodoru z galaktyk jest jednym z elementów uwzględnianych w modelach teoretycznych, jednak dotychczas nie było wiadomo, w jaki sposób strumienie gazu są przyspieszane.

Brytyjscy uczeni, wykorzystując Very Large Telescope zauważyli, że w pobliskiej galaktyce IC5063 molekularny wodór jest przyspieszany przez dżety elektronów do około 1 miliona kilometrów na godzinę. Elektrony, poruszające się niemal z prędkością światła, są z kolei napędzane przez czarną dziurę. Przyspieszanie gazu ma miejsce w obszarze, gdzie jest go bardzo dużo.
Odkrycie pozwala nam lepiej zrozumieć, jaka przyszłość czeka Drogę Mleczną. Za około 4 miliardy lat zderzy się ona z Galaktyką Andromedy. Można zatem przypuszczać, że mocno skoncentrowany gaz, który pojawi się w centrum takiego systemu dwóch galaktyk, będzie napędzany przez czarną dziurę i zostanie wyrzucony z galaktyki.

Profesor Clive Tadhunter zauważa, że molekularny wodór stanowi większość z przyspieszanej materii. Tymczasem jest to niezwykle delikatny gaz, który ulega zniszczeniu już przy niskoenergetycznych oddziaływaniach. To niezwykłe, że ten gaz molekularny może przetrwać spotkanie z dżetami elektronów poruszającymi się z prędkością bliską prędkości światła.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"Ciekawy" to artykuł, czepić można się wiele, ale pozostanę tylko przy:

 

Brytyjscy uczeni, wykorzystując Very Large Telescope zauważyli, że w pobliskiej galaktyce IC5063 molekularny wodór jest przyspieszany przez dżety elektronów do około 1 miliona kilometrów na godzinę. Elektrony, poruszające się niemal z prędkością światła, są z kolei napędzane przez czarną dziurę.

 

Ten milion kilometrów na godzinę to właściwie prędkość Słońca (bardzo wszak "przyzwoitego") w ruchu wokół środka Galaktyki. Prędkość światła wynosi (w tych jednostkach) ponad miliard kilometrów na godzinę... ;)

 

Wiem, może jestem upierdliwy, ale gdyby w zdaniu:

 

Zauważyli oni, że supermasywne czarne dziury znajdujące się w centrach niektórych galaktyk przyspieszają olbrzymie strumienie wodoru wydobywające się z galaktyki.

 

napisać jednak "wodoru molekularnego", to zmieniłoby to wiele.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ten milion km/h odnosi się do prędkości wodoru, nie elektronów. Elektrony mają niemal prędkość światła i napędzają wodór do miliona km/h.

Wodór molekularny - zaraz zmieniam :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wiem, i nie trzeba tu nawet założenia ekwipartycji energii (choć oczywiście wiele to tłumaczy). Odniosłem się "tylko" do "medialnego" przedstawiania wartości. ;)

Dzięki.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wiele z odkrytych dotychczas czarnych dziur jest częścią układu podwójnego. Układy takie składają się z krążących wokół siebie czarnej dziury oraz innego obiektu – jak gwiazda, gwiazda neutronowa czy druga czarna dziura. Astronomowie z MIT-u i Caltechu poinformowali właśnie o zaskakującym odkryciu. Jedna z najlepiej przebadanych czarnych dziur, klasyfikowana jako część układu podwójnego, okazała się wchodzić w skład układu potrójnego.
      Dotychczas sądzono, że czarnej dziurze  V404 Cygni towarzyszy jedynie sąsiednia gwiazda. Obiega ona dziurę w ciągu 6,5 doby, to tak blisko, że V404 Cygni wciąga materiał z gwiazdy.Ku zdumieniu badaczy okazało się jednak, że wokół czarnej dziury krąży jeszcze jedna gwiazda.
      Ten drugi z towarzyszy znajduje się w znacznie większej odległości. Gwiazda obiega dziurę w ciągu 70 000 lat. Sam fakt, że czarna dziura wywiera wpływ grawitacyjny na tak odległy obiekt każe zadać pytania o jej pochodzenie. Czarne dziury tego typu powstają w wyniku eksplozji supernowej. Badacze zauważają jednak, że gdyby tak było w tym przypadku, to energia wyemitowana przez gwiazdę przed jej zapadnięciem się, eksplozją i utworzeniem czarnej dziury, wyrzuciłaby w przestrzeń kosmiczną każdy luźno powiązany z nią obiekt. Zatem tej drugiej gwiazdy, bardziej odległej od czarnej dziury, nie byłoby w jej otoczeniu.
      Dlatego też badacze uważają, że zaobserwowana przez nich czarna dziura powstała w wyniku bezpośredniego zapadnięcia się gwiazdy, w procesie, który nie doprowadził do pojawienia się supernowej. To znacznie bardziej łagodna droga tworzenia się czarnych dziur. Sądzimy, że większość czarnych dziur powstaje w wyniku gwałtownej eksplozji gwiazd, jednak to odkrycie poddaje tę drogę w wątpliwość. To bardzo interesujący układ z punktu badania ewolucji czarnych dziur. I każe zadać sobie pytanie, czy istnieje więcej układów potrójnych, mówi Kevin Burdge z MIT-u.
      Odkrycia dokonano przypadkiem. Naukowcy analizowali bazę Aladin Lite, repozytorium obserwacji astronomicznych wykonanych przez różne teleskopy naziemne i kosmiczne. Wykorzystali automatyczne narzędzie, by wyodrębnić z bazy obserwacje dotyczące tych samych fragmentów nieboskłonów. Szukali w nich śladów nieznanych czarnych dziur. Z ciekawości Burdge zaczął przyglądać się V404 Cygni. To czarna dziura znajdująca się w odległości 8000 lat od Ziemi i jedna z pierwszych potwierdzonych czarnych dziur. Od czasu potwierdzenia w 1992 roku V404 Cygni jest jedną z najlepiej przebadanych czarnych dziur, na jej temat powstało ponad 1300 prac naukowych.
      Burdge, oglądając jej zdjęcia, zauważył dwa źródła światła, zadziwiająco blisko siebie. Pierwsze ze źródeł zostało już wcześniej opisane jako niewielka gwiazda, której materiał jest wciągany przez V404 Cygni. Drugim ze źródeł nikt się dotychczas szczegółowo nie zainteresował. Burdge przystąpił do pracy. Dzięki danym z europejskiego satelity Gaia stwierdził, że to druga gwiazda, poruszająca się w tandemie z pierwszą. Prawdopodobieństwo, że to tylko przypadek, wynosi 1 do 10 milinów.
      Zatem ta druga gwiazda również jest powiązana grawitacyjnie z V404 Cygni. Jest jednak daleko od niej. Znajduje się w odległości 3500 jednostek astronomicznych, czyli 3500 razy dalej niż Ziemia od Słońca. Obserwacje tej gwiazdy zdradziły też wiek całego układu. Badacze stwierdzili, że gwiazda rozpoczyna proces zmiany w czerwonego olbrzyma, ma zatem około 4 miliardów lat.
      Jak się zatem okazuje, nawet – wydawałoby się – bardzo dobrze przebadane obiekty astronomiczne mogą skrywać niezwykłe tajemnice, których rozwikłanie znacząco zmienia i wzbogaca naszą wiedzę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdyby większość ciemnej materii istniała nie w postaci w formie cząstek, a mikroskopijnych czarnych dziur, to mogłyby one wpływać na orbitę Marsa tak, że bylibyśmy w stanie wykryć to za pomocą współczesnej technologii. Zatem zmiany orbity Czerwonej Planety mogłyby posłużyć do szukania ciemnej materii, uważają naukowcy z MIT, Uniwersytetu Stanforda i Uniwersytetu Kalifornijskiego w Santa Cruz. A wszystko zaczęło się od odrodzenia hipotezy z lat 70. XX wieku i pytania o to, co stałoby się z człowiekiem, przez którego przeszłaby miniaturowa czarna dziura.
      Pomysł, że większość ciemnej materii, której wciąż nie potrafimy znaleźć, istnieje w postaci miniaturowych czarnych dziur, narodził się w latach 70. Wysunięto wówczas hipotezę, że u zarania wszechświata z zapadających się chmur gazu powstały niewielkie czarne dziury, które w miarę ochładzania się i rozszerzania wszechświata, rozproszyły się po nim. Takie czarne dziury mogą mieć wielkość pojedynczego atomu i masę największych znanych asteroid. W ostatnich latach hipoteza ta zaczęła zdobywać popularność w kręgach naukowych.
      Niedawno jeden z autorów badań, Tung Tran, został przez kogoś zapytany, co by się stało, gdyby taka  pierwotna czarna dziura przeszła przez człowieka. Tran chwycił za coś do pisania i wyliczył, że gdyby tego typu czarna dziura minęła przeciętnego człowieka w odległości 1 metra, to osoba taka zostałaby w ciągu 1 sekundy odrzucona o 6 metrów.  Badacz wyliczył też, że prawdopodobieństwo, by taki obiekt znalazł się w pobliżu kogokolwiek na Ziemi jest niezwykle małe.
      Jednak Tung postanowił sprawdzić, co by się stało, gdyby miniaturowa czarna dziura przeleciała w pobliżu Ziemi i spowodowała niewielkie zmiany orbity Księżyca. Do pomocy w obliczeniach zaprzągł kolegów. Wyniki, które otrzymaliśmy, były niejasne. W Układzie Słonecznym mamy do czynienia z tak dynamicznym układem, że inne siły mogłyby zapobiec takim zmianom, mówi uczony.
      Badacze, chcąc uzyskać jaśniejszy obraz, stworzyli uproszczoną symulację Układu Słonecznego składającego się z wszystkich planet i największych księżyców. Najdoskonalsze symulacje Układu biorą pod uwagę ponad milion obiektów, z których każdy wywiera jakiś wpływ na inne. Jednak nawet nasza uproszczona symulacja dostarczyła takich danych, które zachęciły nas do bliższego przyjrzenia się problemowi, wyjaśnia Benjamin Lehmann z MIT.
      Na podstawie szacunków dotyczących rozkładu ciemnej materii we wszechświecie i masy miniaturowych czarnych dziur naukowcy obliczyli, że taka wędrująca we wszechświecie czarna dziura może raz na 10 lat trafić do wewnętrznych regionów Układu Słonecznego. Wykorzystując dostępne symulacje rozkładu i prędkości przemieszczania się ciemnej materii w Drodze Mlecznej, uczeni symulowali przeloty tego typu czarnych dziur z prędkością około 241 km/s. Szybko odkryli, że o ile efekty przelotu takiej dziury w pobliżu Ziemi czy Księżyca byłyby trudne do obserwowania, gdyż ciężko byłoby stwierdzić, że widoczne zmiany wywołała czarna dziura, to w przypadku Marsa obraz jest już znacznie jaśniejszy.
      Z symulacji wynika bowiem, że jeśli pierwotna czarna dziura przeleciałaby w odległości kilkuset milionów kilometrów od Marsa, po kilku latach orbita Czerwonej Planety zmieniłaby się o około metr. To wystarczy, by zmianę taką wykryły instrumenty, za pomocą których badamy Marsa.
      Zdaniem badaczy, jeśli w ciągu najbliższych dziesięcioleci zaobserwujemy taką zmianę, powinniśmy przede wszystkim sprawdzić, czy nie została ona spowodowana przez coś innego. Czy to nie była na przykład nudna asteroida, a nie ekscytująca czarna dziura. Na szczęście obecnie jesteśmy w stanie z wieloletnim wyprzedzeniem śledzić tak wielkie asteroidy, obliczać ich trajektorie i porównywać je z tym, co wynika z symulacji dotyczących pierwotnych czarnych dziur, przypomina profesor David Kaiser z MIT.
      A profesor Matt Caplan, który nie był zaangażowany w badania, dodaje, że skoro mamy już obliczenia i symulacje, to pozostaje najtrudniejsza część – znalezienie i zidentyfikowanie prawdziwego sygnału, który potwierdzi te rozważania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Najbliższe Ziemi czarne dziury znajdują się w gromadzie Hiady, informuje międzynarodowy zespół naukowy na łamach Monthly Notices of the Royal Astronomical Society. Hiady (Dżdżownice) to najbliższa Układowi Słonecznemu gromada otwarta. Najnowsze badania pokazują, że znajduje się tam co najmniej kilka czarnych dziur. Gromady otwarte to luźno powiązane grawitacją grupy setek do tysięcy zwykle młodych gwiazd. W Hiadach gwiazd jest około 300, a większości z nich nie widać gołym okiem.
      Dzięki obserwacjom prowadzonym przez należące do ESA obserwatorium kosmiczne Gaia znamy dokładne prędkości i pozycje gwiazd w Hiadach. Naukowcy z Włoch, Hiszpanii, Chin, Niemiec i Holandii przeprowadzili symulacje ruchu wszystkich gwiazd w Hiadach i porównali je z danymi z Gai. "Nasze symulacje odpowiadają rzeczywistej masie i rozmiarom Hiad tylko wówczas, gdy w centrum gromady znajdują się – lub znajdowały się niedawno – czarne dziury", mówi Stefano Torniamenti z Uniwersytetu w Padwie.
      Obserwowane właściwości Hiad najlepiej odpowiadają symulacjom, gdy przyjmiemy, że w gromadzie znajdują się 2-3 gwiazdowe czarne dziury. Symulacje, w których dziury zostały wyrzucone z gromady nie dawniej niż 150 milionów lat temu (Hiady mają ok. 600 milionów lat), także – choć nie tak dobrze – odpowiadają danym obserwacyjnym.
      Czarne dziury znajdujące się w Hiadach lub w pobliżu są zatem najbliższymi nam obiektami tego typu. Ich odległość od Układu Słonecznego wynosi około 45 parseków, czyli ok. 150 lat świetlnych. Dotychczas najbliższa nam znaną czarną dziurą była Gaia BH1 o odległości 480 parseków (1560 l.ś.) od Słońca.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wodór, najbardziej rozpowszechniony pierwiastek we wszechświecie, wciąż potrafi zaskoczyć naukowców. Pomimo dziesięcioleci intensywnych badań i bardzo prostej struktury – w końcu atom wodoru składa się z jednego protonu i jednego elektronu – wiele jego właściwości wciąż pozostaje tajemnicą. Naukowcy z Uniwersytetu Christiana Albrechta w Kilonii i Helmholtz-Zentrum Dresden-Rossendorf drogą teoretycznych obliczeń zauważyli niespodziewaną właściwość wodoru. W warunkach wysokiego ciśnienia wodór powinien zachowywać się jak roton, kwazicząstka wprowadzona przez Richarda Feynmana na określenie stanów wzbudzonych nadciekłego helu-4.
      To niespodziewane zachowanie wodoru przejawia się na przykład niezwykłym rozpraszaniem promieniowania rentgenowskiego w gęstym wodorze. Normalnie promieniowanie rentgenowskie przekazuje energię do elektronów, a transfer energii jest tym większy, im większy jest przekazany pęd. W przeprowadzonych obliczeń wynika jednak, że w gęstym wodorze energia może spadać wraz ze wzrostem transferu pędu.
      Zjawisko takie obserwowano dotychczas jedynie w bardzo egzotycznych układach, cieczach Bosego schłodzonych to temperatury bliskiej zeru absolutnemu. Ciecze takie znajdują się w stanie nadciekłym, zachodzą w nich zjawiska kwantowe i nie da się ich opisać na gruncie klasycznej mechaniki. Ta nowa właściwość wodoru jest powodowana przez elektrony, które nie są powiązane z atomami. Jeśli wodór zostanie wzbudzony promieniowaniem rentgenowskim o pewnej długości fali, elektrony mogą zbliżyć się do siebie na niezwykle małą odległość, a nawet tworzyć pary, mimo że zwykle się odpychają, wyjaśniają profesor Michael Bonitz i doktor Tobias Dornheim.
      Naukowcy dokładnie wyliczyli, jakie właściwości wodoru powinny zostać zaobserwowane w opisywanych przez warunkach. Teraz fizycy-eksperymentatorzy mogą pokusić się o zweryfikowanie tych obliczeń w praktyce.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W centrum naszej galaktyki naukowcy znaleźli nieznane wcześniej struktury. Nieco przypominają one gigantyczne jednowymiarowe włókna materii rozciągające się pionowo w pobliżu centralnej supermasywnej czarnej dziury Sagittarius A*, jakie przed 40 laty zaobserwował Farhad Yusef-Zadek z Northwester University. Jednak nowe struktury, odkryte właśnie przez Yusefa-Zadeha i jego zespół, są znacznie mniejsze i ułożone horyzontalnie od Sgr A*, tworzą coś na podobieństwo szprych koła.
      Populacje obu włókien są podobne w niektórych aspektach, jednak zdaniem odkrywców, mają różne pochodzenie. Giganty mają wyraźny kształt włókien o wysokości dochodzącej do 150 lat świetlnych. Tymczasem włókna poziome są niewielkie, przypominają kropki i kreski z kodu Morse'a, a każde z nich znajduje się tylko po jednej stronie czarnej dziury.
      Byłem zaskoczony tym, co zauważyłem. Dużo czasu zajęła nam weryfikacja tego, co widzimy. I odkryliśmy, że te włókna nie są rozłożone przypadkowo, ale wydają się związane z tym, co wydobywa się z czarnej dziury. Badając je, możemy więcej dowiedzieć się o obrocie czarnej dziury i orientacji dysku akrecyjnego mówi Yusef-Zadeh.
      Profesor fizyki i astronomii, Yusef-Zadech, od ponad 40 lat bada centrum Drogi Mlecznej. W 1984 roku był współodkrywcą olbrzymich pionowych włókien w pobliżu czarnej dziury, a przed 4 laty odkrył w centrum Drogi Mlecznej dwa bąble o długości 700 lat świetlnych każdy. W ubiegłym zaś roku, we współpracy z innymi ekspertami, zarejestrował setki poziomych włókien, które ułożone są w pary lub grupy i bardzo często są równomiernie rozłożone, na podobieństwo strun instrumentu. Uczony, specjalista od radioastronomii, mówi, że coraz częstsze odkrycia tego typu to zasługa nowych technologii i dostępnych instrumentów, szczególnie zaś radioteleskopu MeerKAT z RPA. Ten instrument zmienia reguły gry. Rozwój technologiczny i dedykowany czas obserwacyjny dostarczyły nam nowych informacji. To naprawdę duży postęp techniczny w radioastronomii, wyjaśnia uczony.
      Yusef-Zadeh, który od dekad bada gigantyczne pionowe włókna był bardzo zaskoczony, gdy zauważył też mniejsze poziome struktury. Ich wiek ocenił na 6 milionów lat. Zawsze myślałem o włóknach pionowych i o ich pochodzeniu. Jestem przyzwyczajony do tego, że są pionowe. Nigdy nie przyszło mi na myśl, że mogą być też poziome, mówi. Oba rodzaje włókien są jednowymiarowe, można je obserwować za pomocą fal radiowych i wydają się powiązane z aktywnością czarnej dziury. Ale na tym się ich podobieństwa kończą.
      Włókna pionowe są prostopadłe do płaszczyzny galaktyki. Włókna poziome rozciągnięte są równolegle do płaszczyzny galaktyki, ale promieniście wskazują na jej centrum, gdzie znajduje się Sagittarius A*. Pionowe są magnetyczne i relatywistyczne, poziome wypromieniowują ciepło. Włókna pionowe składają się z cząstek poruszających się niemal z prędkością światła, włókna poziome wydają się przyspieszać gorący materiał znajdujący się w chmurze molekularnej. Dotychczas zaobserwowano setki włókien każdego z rodzajów. Ponadto włókna pionowe mają długość do 150 lat świetlnych, a poziome 5–10 lś. Włókna pionowe znajdują się wszędzie wokół środka galaktyki, natomiast poziomie tylko z jednej strony.
      Odkrycie rodzi więcej pytań niż odpowiedzi. Yusef-Zadeh przypuszcza, że włókna poziome powstały podczas jakiegoś emisji z czarnej dziury, która miała miejsce przed milionami lat. Wydają się wynikiem interakcji materiału, który wypływał, z jakimś pobliskim obiektem. Nasza praca nigdy się nie kończy. Zawsze musimy prowadzić nowe badania i weryfikować naszą wiedzę oraz hipotezy, dodaje uczony.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...