Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Rozpuszczalna sukienka
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Polscy chemicy opracowali stabilne barwniki, silnie emitujące światło czerwone. Umożliwią one badanie mikroskopem fluorescencyjnym głęboko położonych struktur biologicznych i obserwować choćby przeciwciała lub białka biorące udział w rozwoju chorób uszkadzających mózg.
A jednak świeci
Zaprojektowanie, a następnie zsyntetyzowanie lepszych barwników pozwoli na dalszy rozwój mikroskopii STED (Stimulated Emission Depletion) oraz w przyszłości na jej użycie w diagnostyce medycznej – mówi prof. Daniel Gryko z Instytutu Chemii Organicznej PAN, cytowany w informacji przesłanej przez FNP, która finansowała badania.
Polscy naukowcy, we współpracy z Francuzami i Niemcami, stworzyli nową klasę trwałych znaczników fluorescencyjnych – nowy typ diketopirolopiroli – wykazujących niezwykle intensywną emisję światła czerwonego. Prof. Gryko podkreśla, że czerwone światło jest najlepiej widoczne pod mikroskopem fluorescencyjnym. Dlatego nowe związki organiczne będzie można zastosować jako sondy fluorescencyjne.
Wyniki badań przedstawiono w formie publikacji w czasopiśmie „Angewandte Chemie”. Publikacja ta – jak informuje FNP – zmienia sposób patrzenia na związki, które w swojej strukturze mają dwie grupy nitrowe. Dotychczas sądzono, że grupa nitrowa prawie zawsze tłumi fluorescencję. A jednak diketopirolopirole emitują światło, choć mają taką właśnie strukturę. Badacze wykazali, że przy spełnieniu odpowiednich założeń grupa nitrowa nie wpływa na fluorescencję związku. Jest to istotne, bo często taka grupa podwyższa stabilność znacznika. Odkrycie jest w trakcie patentowania.
Od zakreślaczy po zaawansowaną medycynę
Fluorescencja to zdolność do emitowania światła o określonym kolorze, na skutek wzbudzenia promieniowaniem świetlnym o określonej długości. Związki wykazujące fluorescencję są często wykorzystywane w praktyce - od pisaków, tzw. zakreślaczy po tablety, laptopy, a nawet telewizory z wyświetlaczami zbudowanymi z tzw. OLED-ów, czyli diod na bazie związków organicznych, emitujących światło niebieskie, zielone i czerwone.
Związki cechujące się fluorescencją znalazły też zastosowanie w nowoczesnej biologii molekularnej i diagnostyce medycznej. Wykorzystuje się je do obserwacji – przy pomocy mikroskopów fluorescencyjnych – różnych organelli komórkowych, białek, a także do śledzenia procesów zachodzących w komórkach – mówi prof. Daniel Gryko.
Tłumaczy, że mikroskop fluorescencyjny ma znacznie większą rozdzielczość, niż konwencjonalny mikroskop optyczny, który (z uwagi na falową naturę światła) nie pozwala na obrazowanie struktur mniejszych, niż około 200 nanometrów. Rozdzielczość o kilka rzędów wielkości większą niż mikroskop optyczny ma mikroskop elektronowy, ale można w nim obserwować wyłącznie martwe obiekty, umieszczone w próżni i bombardowane wiązką elektronów. Mikroskop fluorescencyjny pozwala badać żywe organizmy i procesy, jakie w nich naturalnie zachodzą.
Do przeprowadzenia takich obserwacji potrzeba właśnie barwników fluorescencyjnych lub znaczników. Barwniki te muszą przenikać przez błony komórkowe żywych komórek. Dołącza się je do obiektu, który ma być uwidoczniony pod mikroskopem, np. konkretnego białka, i w ten sposób można obserwować np. specyficzne przeciwciała lub białka biorące udział w rozwoju chorób uszkadzających mózg: w chorobie Parkinsona, Alzheimera czy Huntingtona.
Najbardziej zaawansowaną techniką mikroskopii fluorescencyjnej jest mikroskopia typu STED, w której oprócz wiązki światła wzbudzającego, wykorzystuje się dodatkową wiązkę, która wygasza fluorescencję na brzegach wzbudzonego punktu. Dzięki temu uzyskany obraz ma bardzo wysoką rozdzielczość.
Opracowanie mikroskopii fluorescencyjnej typu STED zostało uhonorowane Nagrodą Nobla w 2014 roku. Dzięki niej możliwe stało się precyzyjne badanie m.in. wzajemnych oddziaływań białek w komórkach czy różnicowania się tkanek w rozwoju embrionalnym.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Świat ma coraz większy problem z plastikowymi odpadami. By mu zaradzić chemicy z Cornell University opracowali nowy polimer o właściwościach wymaganych w rybołówstwie, który ulega degradacji pod wpływem promieniowania ultrafioletowego, dowiadujemy się z artykułu opublikowanego na łamach Journal of the American Chemical Society.
Stworzyliśmy plastik o właściwościach mechanicznych wymaganych w komercyjnym rybołówstwie. Jeśli wyposażenie to zostanie zgubione w wodzie, ulegnie degradacji w realistycznej skali czasowej. Taki materiał może zmniejszyć akumulowanie się plastiku w środowisku, mówi główny badacz, Bryce Lipinski, doktorant z laboratorium profesora Geoffa Coatesa. Uczony przypomina, że zgubione wyposażenie kutrów rybackich stanowi aż połowę plastikowych odpadów pływających w oceanach. Sieci i liny rybackie są wykonane z trzech głównych rodzajów polimerów: izotaktycznego polipropylenu, polietylenu o wysokiej gęstości oraz nylonu-6,6. Żaden z nich nie ulega łatwej degradacji.
Profesor Coates od 15 lat pracuje na nowym rodzajem plastiku o nazwie izotaktyczny tlenek polipropylenu (iPPO). Podwaliny pod stworzenie tego materiału położono już w 1949 roku, jednak zanim nie zajął się nim Coates niewiele było wiadomo o jego wytrzymałości i właściwościach dotyczących fotodegradacji.
Lipinski zauważył, że iPPO jest zwykle stabilny, jednak ulega degradacji pod wpływem promieniowania ultrafioletowego. W laboratorium widać skutki tej degradacji, jednak są one niewidoczne gołym okiem. Tempo rozpadu tworzywa zależy od intensywności promieniowania. W warunkach laboratoryjnych łańcuch polimerowy uległ skróceniu o 25% po 30-dniowej ekspozycji na UV. Ostatecznym celem naukowców jest stworzenie plastiku, który będzie rozpadał się całkowicie i nie pozostawi w środowisku żadnych śladów. Lipinski mówi, że w literaturze fachowej można znaleźć informacje o biodegradacji krótkich łańcuchów iPPO. Uczony ma jednak zamiar udowodnić, że całkowitemu rozpadowi będą ulegały tak duże przedmioty jak sieci rybackie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Śląskiego opracowali metodę syntezy, która umożliwia produkcję czystego chemicznie polikaprolaktonu (PCL-u). Jest to polimer ulegający naturalnemu rozkładowi w okresie około dwóch lat. Wykazuje on zgodność tkankową, co oznacza, że może być stosowany w przemyśle farmaceutycznym i medycznym. Dodatkowo polimer ten ma dobre właściwości przetwórcze, jest rozpuszczalny w wielu rozpuszczalnikach organicznych oraz może tworzyć mieszalne blendy polimerowe. Powyższe właściwości sprawiają że ma szerokie zastosowania wielkotonażowe, co przekłada się na zainteresowanie wielu ośrodków naukowych i przemysłowych.
PCL może być stosowany jako: nośnik w układach kontrolowanego uwalniania leków, podłoże do hodowli tkanek w inżynierii tkankowej bądź materiał wypełniający. Dzięki temu, że naturalnie rozkłada się w organizmie ludzkim, może być również wykorzystywany do produkcji wchłanialnych nici chirurgicznych czy implantów z pamięcią kształtu, takich jak klamry do łączenia złamań kości czy specjalne pręty stosowane do leczenia schorzeń kręgosłupa.
Zważywszy na interesujące właściwości, polimer ten znajduje także zastosowanie w przemyśle – jako dodatek do opakowań i folii biodegradowalnych, a w połączeniu ze skrobią może być używany do wyrobu tworzywa, z którego otrzymywane są jednorazowe talerzyki czy kubki.
Ze względu na wielkotonażową produkcję PCL-u i jego szerokie zastosowanie w medycynie, ważne jest usprawnianie procesu jego produkcji, najczęściej poprzez modyfikacje sposobu jego otrzymywania. Docelowo proces ten powinien być kontrolowany w taki sposób, aby producenci otrzymywali PCL o określonych, pożądanych właściwościach przy obniżonych wymaganiach technologicznych.
Jest to trudne zadanie przede wszystkim ze względu na potencjalne zastosowanie PCL-u w medycynie, gdzie wyprodukowane z niego narzędzia czy obiekty mają kontakt z tkanką ludzką, co wymusza ponadprzeciętną czystość wymaganą przez producentów. Ponadto produkcja tego polimeru powinna być przyjazna dla środowiska naturalnego.
Interesujące rozwiązanie zaproponowali naukowcy z Uniwersytetu Śląskiego. Zmienili warunki, w których prowadzony jest proces polimeryzacji ε-kaprolaktonu (ε-CL), umożliwiając produkcję polimerów o niespotykanej czystości . Alternatywą okazało się zastosowanie wody jako inicjatora reakcji chemicznej oraz wysokiego ciśnienia jako jej katalizatora. Obecność wody pozwala kontrolować przebieg reakcji, natomiast przeprowadzenie jej w warunkach wysokiego ciśnienia umożliwia otrzymanie produktu o dużej czystości, oznaczającej m.in. brak zawartości jonów metali i zanieczyszczeń organicznych oraz nieorganicznych. Tak otrzymany PCL może być stosowany nie tylko w przemyśle, ale i w medycynie, m.in. do produkcji nici chirurgicznych, jako nośnik leków czy szkielet w inżynierii tkankowej.
Ponadto zaproponowany sposób ciśnieniowej polimeryzacji ε-kaprolaktonu pozwala na uproszczenie składu mieszaniny reakcyjnej, co skutkuje obniżeniem kosztów produkcji. Opisane rozwiązanie zostało objęte ochroną patentową.
Autorami wynalazku są pracownicy Wydziału Nauk Ścisłych i Technicznych: mgr inż. Andrzej Dzienia, dr inż. Paulina Maksym, dr hab. Magdalena Tarnacka, dr hab. Kamil Kamiński, prof. UŚ oraz prof. zw. dr hab. Marian Paluch.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W emaliowanych napisach/zdobieniach z butelek wina, piwa i mocniejszych alkoholi występują potencjalnie szkodliwe stężenia toksycznych pierwiastków - ołowiu i kadmu.
Naukowcy z Uniwersytetu w Plymouth badali szkło i zdobienia/napisy na różnych przezroczystych i kolorowych butelkach.
Wykazali, że kadm, ołów i chrom występują w szkle, ale ich stężenia nie stanowią zagrożenia dla zdrowia czy środowiska. Inaczej było w przypadku emalii. Tutaj poziomy kadmu w butelkach win, piw i mocniejszych alkoholi sięgały 20.000 ppm (ang. parts per million, części na milion), a ołowiu w zdobieniach różnych butelek win nawet 80.000 ppm; dla porównania, norma dot. ołowiu w farbach konsumenckich wynosi 90 ppm.
Brytyjczycy wykazali także, że pierwiastki te mogą "wyciekać" z emaliowanych zdobień. Naukowcy przeprowadzili symulację opadów na wysypisku i w przypadku kilku fragmentów maksymalne stężenia wyciekających Pb i Cd wykraczały poza normy ujęte w amerykańskim Model Toxins in Packaging Legislation. Z tego powodu można je było uznać za niebezpieczne.
Zawsze sporym zaskoczeniem jest zobaczyć wysokie stężenia toksycznych pierwiastków w produktach codziennego użytku. To kolejny przykład tego zjawiska i następny dowód, że szkodliwe pierwiastki są niepotrzebnie wykorzystywane w sytuacjach, gdy istnieją [bezpieczniejsze] alternatywy. Powodem do zmartwień jest możliwość przedostawania się tych pierwiastków do innych obiektów podczas składowania na wysypisku czy recyklingu - podkreśla dr Andrew Turner.
Butelki wina, piwa i mocniejszych alkoholi kupiono między wrześniem 2017 a sierpniem 2018 r. Pojemność butelek wynosiła od 50 do 750 ml.
Butelki były przezroczyste, szronione i brązowe. Uwzględniono też modele ze szkła barwionego zawierające UVAG (ang. ultraviolet-absorbing green, UVAG). Na niektórych znajdowały się jedno- albo wielokolorowe emaliowane obrazy, wzory, logo, tekst czy kody kreskowe.
Za pomocą spektrometrii fluorescencji rentgenowskiej zbadano 89 butelek/fragmentów butelek. W 76 wykryto niskie poziomy ołowiu; 55 zawierało kadm. Chrom wykryto we wszystkich butelkach zielonych i UVAG i tylko w 40% butelek brązowych. Nie było go w butelkach przezroczystych.
Emalia 12 z 24 testowanych zdobionych butelek bazowała w całości bądź częściowo na związkach ołowiu i/lub kadmu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Już w poprzedniej dekadzie interesowano się zastosowaniem interferencji RNA (wyciszania lub wyłączania ekspresji genu przez dwuniciowy RNA) w leczeniu nowotworów. Cały czas problemem pozostawało jednak dostarczanie RNA o sekwencji zbliżonej do wyłączanego wadliwego genu. Naukowcy z MIT-u zaproponowali ostatnio rozwiązanie - zbitki mikrogąbek z długich łańcuchów kwasu nukleinowego.
Skąd problem z dostarczaniem? Małe interferujące RNA (siRNA, od ang. small interfering RNA), które niszczą mRNA, są szybko rozkładane przez enzymy zwalczające wirusy RNA.
Paula Hammond i jej zespół wpadli na pomysł, by RNA pakować w tak gęste mikrosfery, że są one w stanie wytrzymać ataki enzymów aż do momentu dotarcia do celu. Nowy system wyłącza geny równie skutecznie jak wcześniejsze metody, ale przy znacznie zmniejszonej dawce cząstek. Podczas eksperymentów Amerykanie wyłączali za pomocą interferencji RNA gen odpowiadający za świecenie komórek nowotworowych u myszy. Udawało im się to za pomocą zaledwie 1/1000 cząstek potrzebnych przy innych metodach.
Jak tłumaczy Hammond, interferencję RNA można wykorzystać przy wszystkich chorobach związanych z nieprawidłowo funkcjonującymi genami, nie tylko w nowotworach.
Wcześniej siRNA wprowadzano do nanocząstek z lipidów i materiałów nieorganicznych, np. złota. Naukowcy odnosili większe i mniejsze sukcesy, ale nadal nie udawało się wypełnić sfer większą liczbą cząsteczek RNA, bo krótkich łańcuchów nie można ciasno "ubić". Ekipa prof. Hammond zdecydowała się więc na wykorzystanie jednej długiej nici, którą łatwo zmieścić w niewielkiej sferze. Długoniciowe cząsteczki RNA składały się z powtarzalnych sekwencji nukleotydów. Dodatkowo segmenty te pooddzielano krótkimi fragmentami, rozpoznawanymi przez enzym Dicer, który ma za zadanie ciąć RNA właśnie w tych miejscach.
Podczas syntezy RNA tworzy arkusze, które potem samorzutnie zwijają się w bardzo zbite gąbkopodobne sfery. W sferze o średnicy 2 mikronów mieści się do 500 tys. kopii tej samej sekwencji RNA. Potem sfery umieszcza się na dodatnio naładowanym polimerze, co prowadzi do dalszego ich ściskania. Średnica wynosi wtedy zaledwie 200 nanometrów, a to niewątpliwie ułatwia dostanie się do komórki. W komórce Dicer tnie długą nić na serię 21-nukleotydowych nici.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.