Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy badający florę bakteryjną ludzkiej skóry odnotowali, że znaleźć na niej można aż 182 różne gatunki tych mikroorganizmów. Niektóre żyją tam na co dzień, część zaraz zmieni miejsce pobytu.

Dr Martin Blaser z New York University School of Medicine i jego zespół pobrali wymazy ze skóry przedramienia 6 zdrowych osób (Proceedings of the National Academy of Sciences). Warto przypomnieć, że skóra jest naszym największym narządem, stanowiącym 15% masy ciała.

Zidentyfikowaliśmy 182 gatunki bakterii. Na tej podstawie szacujemy, że na skórze bytuje ok. 250 gatunków. Dla porównania: w dobrym zoo powinno być od 100 do 200 gatunków. Wiemy już, że na naszej skórze, i to tylko na przedramieniu, znajduje się wiele różnych gatunków mikrobów. Podobnie jak w renomowanym ogrodzie zoologicznym.

Bez dobrych bakterii nasz organizm by nie przeżył — dodaje dr Zhan Gao, naukowiec zaangażowany w laboratoryjne badania Blasera. Szacuje się, że liczebność bakterii związanych z ludzkim ciałem 10-krotnie przewyższa liczebność komórek organizmu. Te bakterie są w rzeczywistości częścią nas samych — konkluduje Blaser. Nie sądzę, by ciągłe mycie było dobrym pomysłem, ponieważ w ten sposób pozbywamy się jednej z barier ochronnych.

O tym, że bakterie żyją na skórze człowieka, wiedziano od dawna, lecz zespół Amerykanów posłużył się zaawansowaną techniką molekularną (bazującą na DNA), by szczegółowo zbadać zagadnienie.

Flora bakteryjna skóry okazała się bardziej złożona niż pierwotnie sądzono. Odnaleziono 8% nieznanych wcześniej gatunków. Niektóre bakterie stale rezydują na skórze, a 4 rodzaje — Staphylococcus, Streptococcus, Propionibacterium oraz Corynebacterium — grupują nieco ponad połowę wszystkich gatunków. Inne trafiają tam przejściowo. Flora bakteryjna poszczególnych osób różni się od siebie, można jednak wyodrębnić zestaw bazowy, który występuje u każdego człowieka.

W badaniach wzięło udział 3 mężczyzn i 3 kobiety. Odkryto, że płcie mogą się różnić przenoszonymi na skórze bakteriami. Wcześniej naukowcy analizowali florę żołądka i przełyku. Ta ze skóry jest zupełnie inna.

Mikroby żyją najprawdopodobniej w zwierzętach od miliardów lat. Te, które żyją w nas, nie znalazły się tam przypadkowo. Razem ewoluowaliśmy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość m

propionibacterIUM - jesli rodzaj to chyba lp - wiec chyba -ium. przynajmniej tak z mikrobiologii pamietam

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Robactwo zjada ludzi a oni sie z tego cieszą - trzeba się myć :-* :-* :-* z wierzchu i od srodka (lewatywy).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W 2016 roku w Pförring na południu Niemiec odkryto grób młodej kobiety z późnego okresu imperialnego. W pochodzącym z V wieku pochówku znaleziono liczne dobra grobowe. Część z nich znajdowało się w pobliżu jej lewego uda, w jednym bloku ziemi. Blok wydobyto więc w całości i zajęli się nim konserwatorzy. Prześwietlenie promieniami rentgenowskimi wykazało, że znajduje się w nim znacznie więcej przedmiotów, niż było widać na powierzchni bloku. Specjaliści rozpoczęli więc żmudny proces wydobywania przedmiotów, ich badania i konserwacji. Teraz dowiadujemy się, że to zestaw praktycznych i ozdobnych przedmiotów, które zmarła nosiła zawieszone u pasa.
      Archeolodzy znaleźli resztki rzemyków, którymi przedmioty były przywiązane do paska. Były wśród nich dwa klucze z brązu, kościany pojemniczek na igłę, liczne pierścienie z brązu, trzy rzymskie monety, muszla ślimaka morskiego, wisiorek z orzecha włoskiego ozdobiony brązem oraz starannie wykonany ozdobny dysk inkrustowany szkłem. Uwagę zwraca różnorodność przedmiotów oraz fakt, że część z nich to przedmioty użytkowe, część zaś to ozdoby lub talizmany. Zdaniem naukowców, ich noszenie u pasa było nie tylko przejawem ówczesnej mody, ale również oznaką statusu społecznego.
      Odkrycie daje nam interesujący wgląd w kulturę późnego okresu imperialnego na znajdującej się na Dunaju granicy Imperium Romanum oraz na ówczesną symbolikę i sposób używania biżuterii. Zestaw znaleziony u młodej kobiety pochowanej w Pförring jest nietypowy. Pozwala nam na wysunięcie ekscytujących wniosków na temat społecznego i kulturowego środowiska, w którym obracała się zmarła, mówi profesor Mathias Pfeil, główny konserwator w Bawarskim Krajowym Biurze Ochrony Zabytków.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Uniwersytecie Stanforda powstała rewolucyjna technika obrazowania struktur wewnątrz organizmu. Polega ona na uczynieniu skóry i innych tkanek... przezroczystymi. Można tego dokonać nakładając na skórę jeden z barwników spożywczych. Testy na zwierzętach wykazały, że proces jest odwracalny. Technika taka taka, jeśli sprawdzi się na ludziach, może mieć bardzo szerokie zastosowanie – od lokalizowania ran, poprzez monitorowanie chorób układu trawienia, po diagnostykę nowotworową.
      Technologia ta może uczynić żyły lepiej widocznymi podczas pobierania krwi, ułatwić laserowe usuwanie tatuaży i pomagać we wczesnym wykrywaniu i leczeniu nowotworów, mówi Guosong Hong. Na przykład niektóre terapie wykorzystują lasery do usuwania komórek nowotworowych i przednowotworowych, ale ich działanie ograniczone jest do obszaru znajdującego się blisko powierzchni skóry. Ta technika może poprawić penetrację światła laserowego, dodaje.
      Przyczyną, dla której nie możemy zajrzeć do wnętrza organizmu, jest rozpraszanie światła. Tłuszcze, płyny, białka, z których zbudowane są organizmy żywe, rozpraszają światło w różny sposób, powodując, że nie jest ono w stanie penetrować ich wnętrza, więc są dla nas nieprzezroczyste. Naukowcy ze Stanforda stwierdzili, że jeśli chcemy, by materiał biologiczny stał się przezroczysty, musimy spowodować, żeby wszystkie budujące go elementy rozpraszały światło w ten sam sposób. Innymi słowy, by miały taki sam współczynnik załamania. A opierając się na wiedzy z optyki stwierdzili, że barwniki najlepiej absorbują światło i mogą być najlepszym ośrodkiem, który spowoduje ujednolicenie współczynników załamania.
      Szczególną uwagę zwrócili na tartrazynę czyli żółcień spożywczą 5, oznaczoną symbolem E102. Okazało się, że mieli rację. Po rozpuszczeniu w wodzie i zaabsorbowaniu przez tkanki, tartrazyna zapobiegała rozpraszaniu światła. Najpierw barwnik przetestowano na cienkich plastrach kurzej piersi. W miarę, jak stężenie tartrazyny rosło, zwiększał się współczynnik załamania światła w płynie znajdującym się w mięśniach. W końcu zwiększył się do tego stopnia, że był taki, jak w białkach budujących mięśnie. Plaster stał się przezroczysty.
      Później zaczęto eksperymenty na myszach. Najpierw wtarli roztwór tartrazyny w skórę głowy, co pozwoliło im na obserwowanie naczyń krwionośnych. Później nałożyli go na brzuch, dzięki czemu mogli obserwować kurczenie się jelit i ruchy wywoływane oddychaniem oraz biciem serca. Technika pozwalała na obserwacje struktur wielkości mikrometrów, a nawet polepszyła obserwacje mikroskopowe. Po zmyciu tartrazyny ze skóry tkanki szybko wróciły do standardowego wyglądu. Nie zaobserwowano żadnych długoterminowych skutków nałożenia tartrazyny, a jej nadmiar został wydalony z organizmu w ciągu 48 godzin. Naukowcy podejrzewają, że wstrzyknięcie barwnika do tkanki pozwoli na obserwowanie jeszcze głębiej położonych struktur organizmu.
      Badania, w ramach których dokonano tego potencjalnie przełomowego odkrycia, rozpoczęły się jako projekt, którego celem jest sprawdzenie, jak promieniowanie mikrofalowe wpływa na tkanki. Naukowcy przeanalizowali prace z dziedziny optyki z lat 70. i 80. ubiegłego wieku i znaleźli w nich dwa podstawowe narzędzia, które uznali za przydatne w swoich badaniach: matematyczne relacje Kramersa-Kroniga oraz model Lorentza. Te matematyczne narzędzia rozwijane są od dziesięcioleci, jednak nie używano ich w medycynie w taki sposób, jak podczas opisywanych badań.
      Jeden z członków grupy badawczej zdał sobie sprawę, że te same zmiany, które czynią badane materiały przezroczystymi dla mikrofal, można zastosować dla światła widzialnego, co mogłyby być użyteczne w medycynie. Uczeni zamówili więc sięc silne barwniki i zaczęli dokładnie je analizować, szukając tego o idealnych właściwościach optycznych.
      Nowatorskie podejście do problemu pozwoliło na dokonanie potencjalnie przełomowego odkrycia. O relacjach Kramersa-Kroniga uczy się każdy student optyki, w tym przypadku naukowcy wykorzystali tę wiedzę, do zbadania, jak silne barwniki mogą uczynić skórę przezroczystą. Podążyli więc w zupełnie nowym kierunku i wykorzystali znane od dziesięcioleci podstawy do stworzenia nowatorskiej technologii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wspaniały galeon Vasa, wybudowany na polecenie Gustawa Adolfa na wojnę z I Rzeczpospolitą, zatonął w 1628 roku podczas dziewiczego rejsu po przepłynięciu zaledwie 1300 metrów. Wrak odnaleziono ponad 300 lat później, wydobyto, a okręt zrekonstruowano. Można go podziwiać w specjalnie zbudowanym muzeum. Jednak prace badawcze nad okrętem i tym, co wraz z nim znaleziono, wciąż trwają i wciąż przynoszą niespodzianki. Właśnie okazało się, że na pokładzie w chwili zatonięcia jednostki znajdowała się kobieta.
      Wraz z Vasą zginęło około 30 osób. Ze źródeł historycznych znamy tylko nazwisko jednej z nich. Archeolodzy wydobyli liczne szkielety, które również są przedmiotem badań. Analiza osteologiczna wiele zdradza na temat tych ludzi, ich wieku, wzrostu czy historii chorób. Specjaliści, na podstawie budowy miednicy, od niedawna podejrzewali, że szkielet G należał do kobiety. Analizy DNA ujawniły nam jeszcze więcej informacji, mówi doktor Fred Hocker, dyrektor ds. badawczych w Vasamuseet.
      Muzeum on niemal 20 lat współpracuje z Wydziałem Immunologii, Genetyki i Patologii na Uniwersytecie w Uppsali. Akademicy prowadzą badania wszystkich ludzkich szczątków znalezionych wraz z Vasą, by jak najwięcej dowiedzieć się o każdym zmarłym. Badanie szkieletów z Vasy to dla nas to i interesujące, i wymagające wyzwanie. Bardzo trudno jest uzyskać DNA z kości, które przez 333 lata leżały na dnie morskim. Ale nie jest to niemożliwe, mówi profesor genetyki sądowej Marie Allen. Już kilka lat temu podejrzewaliśmy, że szkielet G należał do kobiety. W materiale genetycznym nie znaleźliśmy chromosomu Y. Ale nie mogliśmy być do końca pewni i chcieliśmy potwierdzić wyniki naszych badań, dodaje.
      Szwedzi nawiązali więc współpracę z doktor Kimberly Andreaggi z należącego do Pentagonu laboratorium AFMES-AFDIL (Armed Forces Medical Examiner System’sArmed Forces DNA Identification Laboratory), które specjalizuje się w testowaniu DNA szczątków, o których przypuszcza się, że należą do zaginionych amerykańskich żołnierzy.
      Pobraliśmy nowe próbki z kości, co do których chcieliśmy poznać odpowiedzi na dodatkowe pytania. AFMES-AFDIL przeanalizowało próbki i dzięki swoim metodom mogło potwierdzić, że G to kobieta, cieszy się Marie Allen.
      Wyniki badań bardzo ucieszyły doktor Annę Marię Forssenberg. Jest ona historykiem w Vasamuseet i od pewnego czasu zajmuje się badaniami nad żonami marynarzy. To odkrycie jest dla mnie szczególnie ekscytujące, gdyż zony marynarzy są często zapomniane przez historię, a odegrały ważną rolę w historii marynarki wojennej.
      To jednak nie koniec badań. Wkrótce powinniśmy dowiedzieć się jeszcze więcej. Allen i Adreaggi uważają, że będą mogły określić przybliżony wygląd poszczególnych osób, kolor ich oczu i włosów, być może nawet DNA zdradzi, skąd pochodziły rodziny zmarłych. Obecnie jesteśmy w stanie wydobyć z historycznego DNA więcej informacji niż wcześniej, a metody badawcze ciągle są udoskonalane. Możemy na przykład stwierdzić, czy dana osoba miała predyspozycje do jakichś chorób, a nawet określić takie szczegóły jak posiadanie piegów oraz czy woskowina w ich uszach była sucha czy wilgotna.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Predyspozycja kobiet do odkładania się większej ilości większej ilości podskórnej tkanki tłuszczowej na biodrach, pośladkach i z tyłu ramion, chroni panie przed stanami zapalnymi mózgu, które mogą prowadzić do demencji czy udarów. Ochrona taka trwa co najmniej do menopauzy, informują naukowcy z Augusta University.
      Mężczyźni w każdym wieku wykazują większą od kobiet tendencję do odkładania się tłuszczu wokół organów w jamie brzusznej, co zwiększa ryzyko stanów zapalnych. Gdy myśli się o tym, co przede wszystkim chroni kobiety, na myśl przychodzi estrogen. Jednak powinniśmy wyjść poza uproszczenie sugerujące, że każda różnica pomiędzy płciami jest zależna od hormonów. Musimy sięgnąć głębiej i lepiej poznać mechanizmy różnic międzypłciowych. Bo dzięki temu będziemy mogli skuteczniej leczyć ludzi i przyznać, że różnice pomiędzy płciami mają wpływ na przebieg chorób i ich leczenie, mówi doktor Alexis Stranahan. Uczona zauważa, że wiele różnic międzypłciowych przypisywanych estrogenowi możne był skutkiem różnic dietetycznych i genetycznych.
      Stranahan wraz z zespołem chcąc zbadać, jak dochodzi do stanów zapalnych w mózgu, przyjrzeli się lokalizacji i ilości tkanki tłuszczowej oraz poziomom różnych hormonów u samic i samców myszy karmionych dietą wysokotłuszczową. Otyłe myszy, podobnie jak otyli ludzie, różnie gromadzą tłuszcz w zależności od płci. W miarę, jak myszy tyły, naukowcy nie zauważyli żadnych śladów stanów zapalnych w mózgu czy insulinooporności. W wieku około 48 tygodni u myszy rozpoczęła się menopauza. Wtedy u samic doszło do zmian rozkładu tłuszczu na bardziej podobny do rozkładu u samców. Wówczas naukowcy przeprowadzili u obu płci zabiegi podobne do liposukcji, w czasie których usunęli tłuszcz podskórny. Nie robili niczego, co wpłynęłoby bezpośrednio na poziom estrogenu. Okazało się, że utrata tłuszczu podskórnego zwiększyła u samic ryzyko wystąpienia stanów zapalnych mózgu. Nie zaobserwowano zmian w poziomach hormonów. Szczegółowe badania pokazały, że stany zapalne mózgów samic były podobne do stanów zapalnych mózgów samców.
      Gdy usunęliśmy podskórną tkankę tłuszczową, nagle mózgi samic zaczęły wykazywać podobne stany zapalne do mózgów samców i u samic pojawiło się więcej tłuszczu brzusznego, mówi Stranahan. Cała zmiana zaszła w ciągu ponad 3 miesięcy, co odpowiada kilkunastu latom u ludzi.
      W grupie kontrolnej myszy podobne zmiany zaszły u tych samic, u których nie usunięto podskórnej tkanki tłuszczowej, ale które po menopauzie pozostawały na diecie wysokotłuszczowej. Z kolei u myszy, którym w młodym wieku usunięto tłuszczową tkankę podskórną, ale które pozostawały na diecie niskotłuszczowej, pojawiło się co prawda nieco więcej tłuszczu brzusznego i nieco więcej stanów zapalnych w tkance tłuszczowej, ale nie zauważono stanów zapalnych w mózgu.
      Doktor Stranahan mówi, że z eksperymentów wynikają dwa podstawowe wnioski. Po pierwsze, nie należy robić sobie liposukcji, a następnie spożywać diety bogatej w tłuszcze. Po drugie, współczynnik BMI prawdopodobnie nie jest dobrym wskaźnikiem zwiększonego ryzyka chorób. Bardziej dokładnym wskaźnikiem jest łatwy do obliczenia stosunek bioder do pasa. Nie wystarczy stwierdzić, że ktoś jest otyły. Trzeba zbadać, gdzie tłuszcz się znajduje. To kluczowa sprawa, stwierdza uczona.
      Stranahan nie zaprzecza, że większa ilość podskórnej tkanki tłuszczowej u kobiet ma na celu zapewnienie energii na potrzeby reprodukcji. Jednak trzeba odpowiedzieć tutaj na wiele pytań, na przykład o to, ile tłuszczu potrzeba, by utrzymać odpowiedni poziom płodności, a jaki jego poziom zaczyna negatywnie wpływać na metabolizm.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Długie życie kobiet po menopauzie to zagadka. Zgodnie z obowiązującym poglądem, selekcja naturalna promuje tych, którzy mogą się rozmnażać. Dlatego w pierwszych dekadach życia nasze organizmy lepiej radzą sobie z pojawiającymi się mutacjami. Jednak po okresie reprodukcyjnym, mechanizm ochronny zostaje wyłączony, po menopauzie komórki stają się bardziej podatne na mutacje. Dla większości zwierząt oznacza to szybką śmierć. Wyjątkiem są tu ludzie i niektóre walenie.
      Z ewolucyjnego punktu widzenia długie życie po menopauzie to zagadka. Nie zyskujemy bowiem kilku lat. Mamy cały długi etap życia po przekroczeniu zdolności do reprodukcji, mówi profesor antropologii Michael Gurven z Uniwersytetu Kalifornijskiego w Santa Barbara. Naukowiec przywołuje tutaj przykład naszych bliskich krewnych, szympansów, u których dobrze widać związek pomiędzy płodnością a zdolnością do przeżycia, a długość życia tych zwierząt spada wraz ze spadkiem zdolności reprodukcyjnych.
      Gurven we współpracy z ekologiem populacyjnym Razielem Davisonem opublikowali artykuł, w którym rzucają wyzwanie przekonaniu, że po okresie reprodukcyjnym ochronne mechanizmy doboru naturalnego u ludzi zostają wyłączone. Obaj uczeni stwierdzają, że długie życie po utracie zdolności do reprodukcji nie jest u ludzi tylko i wyłącznie zasługą postępów medycyny i opieki zdrowotnej.
      Wyewoluowaliśmy możliwość długiego życia, stwierdza Gurven. A długie życie wynika z wartości, jakie niesie ze sobą obecność starszych dorosłych. Taki pomysł krążył wśród naukowców już od pewnego czasu. My go sformalizowaliśmy i zadaliśmy pytanie, jakie wartości – z ewolucyjnego punktu widzenia – wnoszą starsi dorośli.
      Jeną z prób wyjaśnienia tego fenomenu jest hipoteza babki, mówiąca, że kobieta po menopauzie, pomagając swojej córce w wychowaniu dzieci, wpływa na polepszenie jej kondycji fizycznej, dzięki czemu córka może mieć więcej dzieci, co z kolei zwiększa szanse przetrwania genów matki. Zatem nie chodzi tutaj o reprodukcję, a rodzaj pośredniej reprodukcji. Możliwość wykorzystania całej puli zasobów, a nie tylko zasobów własnych, zupełnie zmienia reguły gry wśród zwierząt społecznych, wyjaśnia Davison.
      Gurven i Davison przyjrzeli się elementowi, który jest motywem centralnym hipotezy babki, czyli transferom międzygeneracyjnym, a mówiąc prościej – dzieleniem się zasobami pomiędzy młodszym a starszym pokoleniem.
      Najbardziej widocznym przejawem takiego dzielenia się zasobami jest podział pożywienia wśród społeczności nieuprzemysłowiony. Od chwili urodzin muszą minąć mniej więcej 2 dekady, by człowiek zaczął wytwarzać więcej pożywienia, niż sam konsumuje, mówi Gurven, który badał demografię i gospodarkę boliwijskiego ludu Tsimane i innych rdzennych mieszkańców Ameryki Południowej. Zanim dzieci dorosną, będą w stanie o siebie zadbać i stać się produktywnym członkiem społeczności, dorośli muszą włożyć dużo wysiłku w zdobycie i przygotowanie dla nich żywności. Jest to możliwe dlatego, że dorośli są w stanie wytworzyć więcej żywności niż tylko na własne potrzeby. Ta zdolność pojawiła się w naszej ewolucji już dawno i jest obecna też w wysoko rozwiniętych społeczeństwach przemysłowych.
      W naszym modelu duże nadwyżki wytwarzane przez dorosłych pozwalają poprawić szanse na przeżycie i płodność krewniaków oraz innych członków grupy, którzy również dzielą się swoimi nadwyżkami. Patrząc tylko z punktu widzenia produkcji żywności widzimy, że najwyższą wartość mają tutaj ludzie w wieku rozrodczym. Gdy jednak wykorzystaliśmy dane demograficzny i gospodarcze z wielu różnych społeczności łowiecko-zbierackich i rolniczych okazało się, że nadwyżki dostarczane przez starszych dorosłych, również mają pozytywny wpływ na grupę. Obliczyliśmy, że dłuższe życie starszych osób ma wartość kilku dodatkowych dzieci, mówi Davison.
      Okazuje się jednak, że osoby starsze mają swoją wartość, ale tylko do pewnego wieku. Nie wszystkie babki są cenne. Mniej więcej w połowie 7. dekady życia w społecznościach łowiecko-zbierackich i rolniczych starsze osoby zaczynają zużywać więcej zasobów, niż dostarczają. Ponadto w tym czasie większość ich wnuków już ich nie potrzebuje, więc grupa krewnych, która korzysta z ich pomocy jest mała.
      Żywność to jednak nie wszystko. Starsze osoby uczą i socjalizują dzieci. To właśnie na tym polega ich największa wartość. Nie dostarczają już tak dużych nadwyżek żywności, jak kiedyś, ale dzielą się z wnukami swoimi umiejętnościami i doświadczeniem oraz odciążają rodziców od opieki nad dziećmi. Gdy zdasz sobie sprawę z tego, że starsi pomagają młodszemu pokoleniu w utrzymaniu kondycji pozwalającej mu na wytwarzanie dużych nadwyżek, łatwo zauważysz, że to spora korzyść z obecności starszych aktywnych osób. Starsi nie tylko dają coś grupie, ale ich użyteczność dla grupy powoduje, że i oni coś od niej otrzymują. Czy to nadwyżki żywności, czy to ochronę i opiekę. Innymi słowy, współzależności występują w obie strony, od starszych do młodszych i od młodszych do starszych, wyjaśnia Gurven.
      Zdaniem obu badaczy, w toku ludzkiej ewolucji stosowane przez naszych przodków strategie i długoterminowe inwestycje w kondycję grupy skutkowały zarówno wydłużonym dzieciństwem jak i niezwykle długim życiem po okresie rozrodczym. Dla kontrastu możemy się tutaj przyjrzeć szympansom, które są w stanie zadbać o siebie już przed osiągnięciem 5. roku życia.
      Jednak zdobywanie przez nie pokarmu wymaga mniejszych umiejętności i wytwarzają one niewielkie nadwyżki. Mimo to, jak sugerują Gurven i Davison, gdyby przodek szympansa szerzej dzielił się żywnością z grupą, także i u nich pojawiłyby się mechanizmy preferujące długowieczność. To pokazuje, że naszą długowieczność zawdzięczamy współpracy. Szympansie babki rzadko robią coś dla swoich wnucząt, dodaje Gurven.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...