Sposób na sprawdzenie teorii strun?
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Kosmologowie od dawna mają problem z jedną z podstawowych wartości opisujących wszechświat – tempem jego rozszerzania się. Różne pomiary przynoszą bowiem różne wartości. Teraz coraz wyraźniej widać kolejne pęknięcie w standardowym modelu kosmologicznym. Niedawno grupa naukowców wykazała, że wszechświat jest niespodziewanie rzadki. Materia nie gromadzi się w nim tak, jak się spodziewano. Podobne sygnały pojawiały się już wcześniej, tym razem jednak mamy do czynienia z najbardziej szczegółową analizą danych zbieranych przez 7 lat.
Dane są na tyle wiarygodne, że niektórzy specjaliści zastanawiają się, czy nie wpadliśmy na trop czegoś nieznanego. Mamy już ciemną materię i ciemną energię. Mam nadzieję, że do wyjaśnień nie potrzebujemy kolejnej ciemnej rzeczy, mówi Michael Hudson, kosmolog z University of Waterloo, który nie był zaangażowany w najnowsze badania.
Autorzy najnowszych badań, skupieni wokół inicjatywy Kilo-Degree Survey (KiDS), obserwowali około 31 milionów galaktyk, położonych w promieniu do 10 miliardów lat świetlnych od Ziemi. Na podstawie tych obserwacji wyliczyli średni rozkład niewidocznego gazu i ciemnej materii we wszechświecie. Odkryli, że jest jej niemal o 10% mniej niż przewiduje jeden z najpowszechniej uznawanych modeli kosmologicznych, Model Lambda-CDM.
W ciągu ostatnich ośmiu lat pojawiło się kilkanaście badań, których autorzy – korzystając z różnych technik – dochodzili do wniosku, że materia nie gromadzi się zgodnie z przewidywaniami. Rozpatrywane osobno badania te nie mają większego znaczenia. Rozważane w nich kwestie są tak trudne do zbadania, że łato mogło dojść do pomyłek. Jednak coraz częściej pojawiają się głosy, że to nie statystycznie dopuszczalne niedoskonałości w badaniach, ale reguła. Gdy w wielu różnych zestawach danych zaczynasz dostrzegać tę samą rzecz, musisz wziąć pod uwagę, że coś w tym jest, stwierdza Hudson.
Naukowcy muszą teraz pogodzić dwie sprzeczne ze sobą rzeczy. Z jednej strony, by określić tempo rozszerzania się wszechświata – w wiele wskazuje na to, że jest ono większe, niż sądzono – muszą znaleźć dodatkowy element, który go napędza. Z drugiej jednak strony skoro materia nie gromadzi się razem tak, jak przypuszczano, do siły na nią oddziałujące są słabsze, a nie mocniejsze, jak wymagałoby tego wyjaśnienie tempa rozszerzania się wszechświata. Julien Lesgourgues, kosmolog-teoretyk z Uniwersytetu Aachen mówi, że znalezienie satysfakcjonującego wyjaśnienia obu tych zjawisk będzie koszmarem.
Podejmowane są pewne próby wyjaśnień wspomnianych zjawisk. Przyspieszenie ekspansji wszechświata można by wyjaśnić „ciemnym promieniowaniem”. Jednak trzeba by je zbilansować dodatkową materią, która by się grupowała. Aby osiągnąć obserwowane mniejsze grupowanie się, trzeba by wprowadzić dodatkowy element, który to uniemożliwia. Tutaj pojawia się próba wyjaśnienia w postaci zamiany ciemnej materii – która powoduje grupowanie się materii – w ciemną energię, powodującą jej oddalanie się od siebie. Można też przyjąć, że Ziemia znajduje się w jakimś wielkim bąblu rozrzedzonej materii, co zaburza nasze obserwacje. Lub też uznać, że szybkie tempo rozszerzania się wszechświata i mniejsze grupowanie się materii nie są ze sobą powiązane. Nie widzę obecnie żadnego satysfakcjonującego wyjaśnienia. Jeśli jednak byłbym teoretykiem byłbym bardzo podekscytowany, mówi Hudson.
Wciąż też istnieje prawdopodobieństwo, że oba omawiane zjawiska lub przynajmniej jedno z nich, w rzeczywistości nie mają miejsca. Jednak by to stwierdzić, trzeba poczekać na inne dane. KiDS to jeden z trzech dużych projektów badawczych. Inne to międzynarodowy Dark Energy Survey prowadzony w Chile i japoński Hyper Suprime-Cam. W ramach każdego z nich skanowany jest inny fragment nieboskłonu na inną głębokość. W czasie ostatniej kampanii Dark Energy Survey przeskanowano obszar 5-krotnie większy niż badał KiDS. Wyniki powinny ukazać się w ciągu najbliższych miesięcy. Wszyscy na nie czekają. To kolejna wielka rzecz w kosmologii, mówi Daniel Scolnic, kosmolog z Duke University, który specjalizuje się w badaniu tempa rozszerzania się wszechświata.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Eksperci z Rocky Mountain Institute opublikowali raport, z którego dowiadujemy się, że koszty produkcji energii z węgla osiągnęły punkt zwrotny i obecnie energia ta na większości rynków przegrywa konkurencję cenową z energią ze źródeł odnawialnych. Z analiz wynika, że już w tej chwili koszty operacyjne około 39% wszystkich światowych elektrowni węglowych są wyższe niż koszty wybudowania od podstaw nowych źródeł energii odnawialnej.
Sytuacja ekonomiczna węgla będzie błyskawicznie się pogarszała. Do roku 2025 już 73% elektrowni węglowych będzie droższych w utrzymaniu niż budowa zastępujących je odnawialnych źródeł energii. Autorzy raportu wyliczają, że gdyby nagle cały świat podjął decyzję o wyłączeniu wszystkich elektrowni węglowych i wybudowaniu w ich miejsce odnawialnych źródeł energii, to przeprowadzenie takiej operacji stanie się opłacalne już za dwa lata.
Szybsze przejście od węgla do czystej energii jest w zasięgu ręki. W naszym raporcie pokazujemy, jak przeprowadzić taką zmianę, by z jednej strony odbiorcy energii zaoszczędzili pieniądze, a z drugiej strony, by pracownicy i społeczności żyjące obecnie z energii węglowej mogli czerpać korzyści z energetyki odnawialnej, mówi Paul Bodnar, dyrektor Rocky Mountain Institute.
Autorzy raportu przeanalizowali sytuację ekonomiczną 2472 elektrowni węglowych na całym świecie. Wzięli też pod uwagę koszty wytwarzania energii ze źródeł odnawialnych oraz jej przechowywania. Na podstawie tych danych byli w stanie ocenić opłacalność energetyki węglowej w 37 krajach na świecie, w których zainstalowane jest 95% całej światowej produkcji energii z węgla. Oszacowali też koszty zastąpienia zarówno nieopłacalnej obecnie, jak o opłacalnej, energetyki węglowej przez źródła odnawialne.
Z raportu dowiadujmy się, że gdyby na skalę światową zastąpić nieopłacalne źródła energii z węgla źródłami odnawialnymi, to w bieżącym roku klienci na całym świecie zaoszczędziliby 39 miliardów USD, w 2022 roczne oszczędności sięgnęłyby 86 miliardów, a w roku 2025 wzrosłyby do 141 miliardów. Gdyby jednak do szacunków włączyć również opłacalne obecnie elektrownie węglowe, innymi słowy, gdybyśmy chcieli już teraz całkowicie zrezygnować z węgla, to tegoroczny koszt netto takiej operacji wyniósłby 116 miliardów USD. Tyle musiałby obecnie świat zapłacić, by już teraz zrezygnować z generowania energii elektrycznej z węgla. Jednak koszt ten błyskawicznie by się obniżał. W roku 2022 zmiana taka nic by nie kosztowała (to znaczy koszty i oszczędności by się zrównoważyły), a w roku 2025 odnieślibyśmy korzyści finansowe przekraczające 100 miliardów dolarów w skali globu.
W Unii Europejskiej już w tej chwili nieopłacalnych jest 81% elektrowni węglowych. Innymi słowy, elektrownie te przeżywałyby kłopoty finansowe, gdyby nie otrzymywały dotacji z budżetu. Do roku 2025 wszystkie europejskie elektrownie węglowe będą przynosiły straty. W Chinach nieopłacalnych jest 43% elektrowni węglowych, a w ciągu najbliższych 5 lat nieopłacalnych będzie 94% elektrowni węglowych. W Indiach zaś trzeba dopłacać obecnie do 17% elektrowni, a w roku 2025 nieopłacalnych będzie 85% elektrowni.
Co ważne, w swoich wyliczeniach dotyczących opłacalności elektrowni węglowych analitycy nie brali pod uwagę zdrowotnych i środowiskowych kosztów spalania węgla.
Energia węglowa szybko staje się nieopłacalna i to nie uwzględniając kosztów związanych z prawem do emisji i regulacjami odnośnie zanieczyszczeń powietrza. Zamknięcie elektrowni węglowych i zastąpienie ich tańszymi alternatywami nie tylko pozwoli zaoszczędzić pieniądze konsumentów i podatników, ale może też odegrać znaczną rolę w wychodzeniu gospodarki z kryzysu po pandemii, mówi Matt Gray stojący na czele Carbon Tracker Initiative.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Uniwersytecie w Glasgow po raz pierwszy eksperymentalnie potwierdzono teorię dotyczącą pozyskiwania energii z czarnych dziur. W 1969 roku wybitny fizyk Roger Penrose stwierdził, że można wygenerować energię opuszczając obiekt do ergosfery czarnej dziury. Ergosfera to zewnętrzna część horyzontu zdarzeń. Znajdujący się tam obiekt musiałby poruszać się szybciej od prędkości światła, by utrzymać się w miejscu.
Penrose przewidywał, że w tym niezwykłym miejscu w przestrzeni obiekt nabyłby ujemną energię. Zrzucając tam obiekt i dzieląc go na dwie części tak, że jedna z nich wpadnie do czarnej dziury, a druga zostanie odzyskana, spowodujemy odrzut, który będzie mierzony wielkością utraconej energii negatywnej, a to oznacza, że odzyskana część przedmiotu zyska energię pobraną z obrotu czarnej dziury. Jak przewidywał Penrose, trudności inżynieryjne związane z przeprowadzeniem tego procesu są tak wielkie, że mogłaby tego dokonać jedynie bardzo zaawansowana obca cywilizacja.
Dwa lata później znany radziecki fizyk Jakow Zeldowicz uznał, że teorię tę można przetestować w prostszy, dostępny na Ziemi sposób. Stwierdził, że „skręcone” fale światła uderzające o powierzchnię obracającego się z odpowiednią prędkością cylindra zostaną odbite i przejmą od cylindra dodatkową energię. Jednak przeprowadzenie takiego eksperymentu było, i ciągle jest, niemożliwe ze względów inżynieryjnych. Zeldowicz obliczał bowiem, że cylinder musiałby poruszać się z prędkością co najmniej miliarda obrotów na sekundę.
Teraz naukowcy z Wydziału Fizyki i Astronomii University of Glasgow opracowali sposób na sprawdzenie teorii Penrose'a. Wykorzystali przy tym zmodyfikowany pomysł Zeldowicza i zamiast "skręconych" fal światła użyli dźwięku, źródła o znacznie niższej częstotliwości, i łatwiejszego do użycia w laboratorium.
Na łamach Nature Physics Brytyjczycy opisali, jak wykorzystali zestaw głośników do uzyskania fal dźwiękowych, skręconych na podobieństwo fal świetlnych w pomyśle Zeldowicza. Dźwięk został skierowany w stronę obracającego się piankowego dysku, który go absorbował. Za dyskiem umieszczono zestaw mikrofonów, które rejestrowały dźwięk przechodzący przez dysk, którego prędkość obrotowa była stopniowo zwiększana.
Naukowcy stwierdzili, że jeśli teoria Penrose'a jest prawdziwa, to powinni odnotować znaczącą zmianę w częstotliwości i amplitudzie dźwięku przechodzącego przez dysk. Zmiana taka powinna zajść w wyniku efektu Dopplera.
Z liniową wersją efektu Dopplera wszyscy się zetknęli słysząc syrenę karetki pogotowia, której ton wydaje się rosnąć w miarę zbliżania się pojazdu i obniżać, gdy się on oddala. Jest to spowodowane faktem, że gdy pojazd się zbliża, fale dźwiękowe docierają do nas coraz częściej, a gdy się oddala, słyszymy je coraz rzadziej. Obrotowy efekt Dopplera działa podobnie, jednak jest on ograniczony do okrągłej przestrzeni. Skręcone fale dźwiękowe zmieniają ton gdy są mierzone z punktu widzenia obracającej się powierzchni. Gdy powierzchnia ta obraca się odpowiednio szybko z częstotliwością dźwięku dzieje się coś dziwnego – przechodzi z częstotliwości dodatniej do ujemnej, a czyniąc to pobiera nieco energii z obrotu powierzchni, wyjaśnia doktorantka Marion Cromb, główna autorka artykułu.
W miarę jak rosła prędkość obrotowa obracającego się dysku, ton dźwięku stawał się coraz niższy, aż w końcu nie było go słychać. Później znowu zaczął rosnąć, aż do momentu, gdy miał tę samą wysokość co wcześniej, ale był głośniejszy. Jego amplituda była o nawet 30% większa niż amplituda dźwięku wydobywającego się z głośników.
To co usłyszeliśmy podczas naszych eksperymentów było niesamowite. Najpierw, w wyniku działania efektu Dopplera częstotliwość fal dźwiękowych zmniejszała się w miarę zwiększania prędkości obrotowej dysku i spadła do zera. Później znowu pojawił się dźwięk. Stało się tak, gdyż doszło do zmiany częstotliwości fal z dodatniej na ujemną. Te fale o ujemnej częstotliwości były w stanie pozyskać część energii z obracającego się dysku i stały się głośniejsze. Zaszło zjawisko, które Zeldowicz przewidział w 1971 roku, dodaje Cromb.
Współautor badań, profesor Daniele Faccio, stwierdza: jesteśmy niesamowicie podekscytowani faktem, że mogliśmy eksperymentalnie potwierdzić jedną z najdziwniejszych hipotez fizycznych pół wieku po jej ogłoszeniu. I że mogliśmy potwierdzić teorię dotyczącą kosmosu w naszym laboratorium w zachodniej Szkocji. Sądzimy, że otwiera to drogę do kolejnych badań. W przyszłości chcielibyśmy badać ten efekt za pomocą różnych źródeł fal elektromagnetycznych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Często i mało, czy rzadko, ale do syta? Gdyby chodziło o dietę, większość specjalistów postawiłaby na odpowiedź 1, ale w przypadku magazynowania energii jest odwrotnie. Okazuje się, że więcej można jej zmieścić ładując rzadko, ale do pełna.Taki przynajmniej wniosek płynie z badań przeprowadzonych przez zespół naukowców IChF PAN.
Doświadczenia dotyczyły co prawda wyidealizowanych, dwuwymiarowych układów sieciowych, ale w końcu zasada to zasada. Dr Anna Maciołek, jedna z autorów pracy opublikowanej w Physical Review opisuje ją tak: Chcieliśmy zbadać, jak zmienia się sposób magazynowania energii w układzie, gdy pompujemy do niego energię w postaci ciepła, innymi słowy – lokalnie go podgrzewamy.
Wiadomo, że ciepło w układach się rozprzestrzenia, dyfunduje. Ale czy na gromadzenie energii ma wpływ sposób jej dostarczania; fachowo mówiąc „geometria podawania”? Czy ma znaczenie, że podajemy dużo energii w krótkim czasie i potem długo nic, i znowu dużo energii, czy też gdy podajemy malutkie porcje tej energii, ale za to jedna po drugiej, niemal bez przerw?
Cykliczne podawanie energii jest bardzo powszechne w naturze. Sami dostarczamy jej sobie w ten sposób, jedząc. Tę samą liczbę kalorii można dostarczyć w jednej lub dwóch dużych porcjach zjadanych w ciągu doby, albo rozbić ją na 5-7 mniejszych posiłków, między którymi są krótsze przerwy. Naukowcy wciąż się spierają, który sposób jest dla organizmu lepszy. Jeśli jednak chodzi o dwuwymiarowe układy sieciowe, to już wiadomo, że pod względem efektywności magazynowania wygrywa metoda „rzadko a dużo”.
Zauważyliśmy, że w zależności od tego, w jakich porcjach i jak często podajemy energię, ilość, jaką układ potrafi zmagazynować, zmienia się. Największa jest wtedy, gdy porcje energii są duże, ale odstępy czasowe między ich podaniem też są długie, wyjaśnia Yirui Zhang, doktorantka w IChF PAN. Co ciekawe, okazuje się, że gdy taki układ magazynujący podzielimy wewnętrznie na swego rodzaju przedziały, czy też komory, to ilość energii możliwej do zmagazynowania w takim podzielonym ‘akumulatorze’ – o ile bylibyśmy go w stanie skonstruować – wzrośnie. Innymi słowy, trzy małe baterie zmagazynują więcej energii niż jedna duża, precyzuje badaczka. Wszystko to przy założeniu, że całkowita ilość wkładanej do układu energii jest taka sama, zmienia się tylko sposób jej dostarczania.
Choć badania prowadzone przez zespół IChF PAN należą do podstawowych i ukazują po prostu fundamentalną zasadę rządzącą magazynowaniem energii w magnetykach, ich potencjalne zastosowania są nie do przecenienia. Wyobraźmy sobie np. możliwość ładowania baterii elektrycznego samochodu nie w kilka godzin, lecz w kilkanaście minut albo znaczące zwiększenie pojemności takich akumulatorów bez zmiany ich objętości, czyli wydłużenie zasięgu auta na jednym ładowaniu. Nowe odkrycie może też w przyszłości zmienić sposoby ładowania baterii różnego typu poprzez ustalenie optymalnej periodyczności dostarczania do nich energii
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli najpotężniejszą eksplozję we wszechświecie od czasu Wielkiego Wybuchu. Eksplozja pochodziła z supermasywnej czarnej dziury znajdującej się w galaktyce położonej setki milionów lat świetlnych od Ziemi. W czasie wybuchu uwolniło się 5-krotnie więcej energii niż z wcześniejszej najpotężniejszej znanej nam eksplozji.
Obserwowaliśmy już takie wydarzenia w centrach galaktyk, ale to jest naprawdę olbrzymie. I nie wiemy, dlaczego jest tak potężne. Wybuch przebiegał bardzo powoli. Jak eksplozja w zwolnionym tempie rozciągająca się setki milionów lat, mówi profesor Melanie Johnston-Hollitt.
Do potężnego wybuchu doszło w Supergromadzie w Wężowniku. Był on tak silny, że wypalił dziurę w supergorącej plazmie otaczającej czarną dziurę.
Początkowo, gdy teleskopy działające w zakresie promieniowania rentgenowskiego zauważyły dziurę w plazmie, odrzucono hipotezę, że mogła ona powstać w wyniku eksplozji, gdyż nie wyobrażano sobie, że może dojść do tak silnego wybuchu.
Sceptycyzm był spowodowany siłą wybuchu konieczną do wywołania takiego efektu. Ale okazało się, że naprawdę do niego doszło. Wszechświat to dziwne miejsce, mówi Johnston-Hollit. Dopiero, gdy do obserwacji zaprzęgnięto radioteleskopy, naukowcy w pełni zdali sobie sprawę z tego, co odkryli. Dane z radioteleskopów pasowały do danych z teleskopów rentgenowskich jak rękawiczka do ręki, dodaje współautor badań doktor Maxim Markevitch z Goddard Space Flight Center.
Profesor Johnston-Hollitt porównuje swoją pracę do archeologii. Mamy teraz narzędzia, radioteleskopy pracujące na niskich częstotliwościach, które pozwolą nam kopać głębiej w przeszłości. Powinniśmy być w stanie wykryć więcej tego typu eksplozji, mówi.
Uczona przypomina, że odkrycia dokonano za pomocą czterech różnych teleskopów, w tym Murchison Widefield Array (MWA), którego budowa jeszcze nie została dokończona. Obecnie MWA składa się z 2048 anten. Wkrótce będziemy mogli wykorzystać 4069 anten, dzięki czemu teleskop będzie 10-krotnie bardziej czuły niż obecnie. MWA to jedna z czterech części Square Kilometre Array (SKA).
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.