Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Mrówcza orientacja na pustyni
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Unii Europejskiej transport drogowy jest jedynym ważnym sektorem działalności gospodarczej, w którym emisja CO2 wciąż rośnie od 1990 roku. Niewykluczone jednak, że właśnie jesteśmy świadkami zmiany tego trendu. Międzynarodowa Rada Czystego Transportu (International Council on Clean Transportation, ICCT), niedochodowa organizacja doradczo-badawcza, opublikowała nową edycję swojego raportu Vision 2050, w którym analizuje globalne polityki dotyczące czystego transportu oraz rozwoju rynkowego.
Analizie poddawane są trendy w sprzedaży samochodów, przepisy prawne, rozwiązania polityczne, zużycie energii, analizowane możliwe scenariusze rozwoju wydarzeń do roku 2050. W tegorocznym raporcie szczególnie skupiono się na rozwiązaniach politycznych wprowadzonych w ciągu ostatnich 3 lat. Analitycy ICCT przewidują, że w bieżącym roku emisja z transportu drogowego sięgnie na terenie UE niemal 800 milionów ton dwutlenku węgla i będzie to maksymalna wartość historyczna. Od przyszłego roku emisja z pojazdów będzie spadała i około roku 2035 zmniejszy się o około 25% w porównaniu z rokiem bieżącym.
Z naszej analizy wynika, że europejski sektor transportowy znajduje się w historycznym punkcie przegięcia. Dekadę po podpisaniu Porozumienia Paryskiego w Europie dochodzi do zmiany i przejścia na pojazdy elektryczne, które są bardziej efektywne energetycznie i charakteryzują się znacznie mniejszą emisją. Jednak nasza analiza zawiera też ostrzeżenie, odejście od obecnych celów redukcji CO i złagodzenie wymagań wobec producentów samochodów może spowodować, że do spadku emisji nie dojdzie, stwierdził Felipe Rodriguez, zastępca dyrektora ICCT na Europę.
Analitycy ICCT porównali stan prawny obowiązujący w Unii Europejskiej w 2021 roku z przepisami wprowadzonymi w ciągu kolejnych 3 lat. Stwierdzili, że nowe przepisy i standardy emisji dla ciężarówek w znaczący sposób zbliżają kraje UE do osiągnięcia celów Porozumienia Paryskiego. Podobny pozytywny trend widać też w skali globalnej. Być może i w skali całego globu konsumpcja paliw płynnych i emisja z transportu osiągną szczyt w 2025 roku, a później zaczną spadać. Dużo bowiem wskazuje na to, że zmniejszenie emisji z transportu w Chinach, UE i USA będzie większe, niż jej zwiększenie na pozostałych obszarach planety.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po dziesięcioleciach udało się odkryć ambipolarne (dwukierunkowe) pole elektryczne Ziemi. To słabe pole elektryczne naszej planety, które jest tak podstawową jej cechą jak grawitacja czy pola magnetyczne. Hipoteza o istnieniu takiego pola pojawiła się ponad 60 lat temu i od tamtego czasu poszukiwano tego pola. Jest ono kluczowym mechanizmem napędzającym „wiatr polarny”, czyli ucieczkę naładowanych cząstek z ziemskiej atmosfery w przestrzeń kosmiczną. Ma ona miejsce nad ziemskimi biegunami.
„Wiatr polarny” został odkryty w latach 60. XX wieku. Od samego początku naukowcy uważali, że jego siłą napędową jest nieznane pole elektryczne. Uważano, że jest ono generowane w skali subatomowej i jest niezwykle słabe. Przez kolejnych kilkadziesiąt lat ludzkość nie dysponowała narzędziami, które mogły zarejestrować takie pole.
W 2016 roku Glyn Collinson i jego zespół z Goddars Space Flight Center zaczęli pracować nad instrumentami zdolnymi do zmierzenia ambipolarnego pola elektrycznego. Stworzone przez nich urządzenia oraz metoda pomiaru zakładały przeprowadzenie badań za pomocą rakiety suborbitalnej wystrzelonej z Arktyki. Badacze nazwali swoją misję Endurance, na cześć statku, którym Ernest Shackleton popłynął w 1914 roku na swoją słynną wyprawę na Antarktykę. Rakietę postanowiono wystrzelić ze Svalbardu, gdzie znajduje się najbardziej na północ wysunięty kosmodrom. Svalbard to jedyny kosmodrom na świecie, z którego można wystartować, by przelecieć przez wiatr polarny i dokonać koniecznych pomiarów, mówi współautorka badań, Suzie Imber z University of Leicester.
Misja Endurance została wystrzelona 11 maja 2022 roku. Rakieta osiągnęła wysokość 768,03 km i 19 minut później spadła do Morza Grenlandzkiego. Urządzenia pokładowe zbierały dane przez 518 kilometrów nabierania wysokości i zanotowały w tej przestrzeni zmianę potencjału elektrycznego o 0,55 wolta. Pół wolta to tyle co nic, to napięcie baterii w zegarku. Ale to dokładnie tyle, ile trzeba do napędzenia wiatru polarnego, wyjaśnia Collinson.
Generowane pole elektryczne oddziałuje na jony wodoru, które dominują w wietrze polarnym, z siłą 10,6-krotnie większą niż grawitacja. To więcej niż trzeba, by pokonać grawitację. To wystarczająco dużo, by wystrzelić jony z prędkością naddźwiękową prosto w przestrzeń kosmiczną, dodaje Alex Glocer z NASA. Pole napędza też cięższe pierwiastki, jak jony tlenu. Z badań wynika, że dzięki obecności tego pola elektrycznego jonosfera jest na dużej wysokości o 271% bardziej gęsta, niż byłaby bez niego. Mamy tutaj rodzaj taśmociągu, podnoszącego atmosferę do góry, dodaje Collinson.
Pole to nazwano ambipolarnym (dwukierunkowym), gdyż działa w obie strony. Opadające pod wpływem grawitacji jony ciągną elektrony w dół, a w tym samym czasie elektrony – próbując uciec w przestrzeń kosmiczną – ciągną jony w górę. Wskutek tego wysokość atmosfery zwiększa się, a część jonów trafia na wystarczającą wysokość, by uciec w przestrzen kosmiczną w postaci wiatru polarnego.
Odkrycie ambipolarnego pola elektrycznego otwiera przed nauką nowe pola badawcze. Jest ono bowiem, obok grawitacji i pola magnetycznego, podstawowym polem energetycznym otaczającym naszą planetę, wciąż wpływa na ewolucję naszej atmosfery w sposób, który dopiero teraz możemy badać. Co więcej, każda planeta posiadająca atmosferę powinna mieć też ambipolarne pole elektryczne. Można więc będzie go szukać i badać na Marsie czy Wenus.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Intensywność pola magnetycznego Ziemi zmniejsza się od około 200 lat. Proces ten przebiega na tyle szybko, że niektórzy naukowcy ogłosili, iż w ciągu 2000 lat dojdzie do zamiany biegunów magnetycznych. Przebiegunowanie mogłoby spowodować, że przez kilka tysięcy lat Ziemia byłaby gorzej chroniona przed szkodliwym promieniowaniem kosmicznym i słonecznym. To z kolei doprowadziłoby do poważnych zakłóceń i awarii sprzętu elektronicznego, wzrostu przypadków zachorowań na nowotwory i zwiększenia się liczby mutacji genetycznych. Niewykluczone, że ucierpiałyby też te gatunki zwierząt, które w swoich migracjach orientują się wedle pola magnetycznego.
Naukowcy z MIT-u opublikowali na łamach PNAS artykuł opisujący wyniki ich badań nad stanem pola magnetycznego planety. Ich zdaniem przebiegunowanie nie grozi nam w najbliższym czasie. Uczeni obliczyli średnią intensywność stabilnego ziemskiego pola magnetycznego na przestrzeni ostatnich 5 milionów lat i odkryli, że obecnie pole to jest dwukrotnie bardziej intensywne niż średnia z tego okresu. To oznacza, że minie jeszcze sporo czasu, zanim pole magnetyczne planety stanie się niestabilne i dojdzie do przebiegunowania. To olbrzymia różnica, czy dzisiejsze pole magnetyczne jest takie jak średnia długoterminowa czy też jest powyżej średniej. Teraz wiemy, że nawet jeśli intensywność pola magnetycznego Ziemi się zmniejsza to jeszcze przez długi czas będzie się ono znajdowało w bezpiecznym zakresie - mówi Huapei Wang, główny autor badań.
Z innych badań wiemy, że w przeszłości wielokrotnie dochodziło do przebiegunowania naszej planety. Jest to jednak proces bardzo nieregularny. Czasami przez 40 milionów lat nie było przebiegunowania, a czasem bieguny zmieniały się 10-krotnie w ciągu miliona lat. Średni czas pomiędzy przebiegunowaniami wynosi kilkaset tysięcy lat. Ostatnie przebiegunowanie miało miejsce około 780 000 lat temu, zatem średnia już została przekroczona - dodaje Wang.
Sygnałem nadchodzącego przebiegunowania jest znaczący spadek poniżej średniej długoterminowej intensywności pola magnetycznego. To wskazuje, że stanie się ono niestabilne. Zarówno z badań terenowych jak i satelitarnych mamy dobre dane dotyczące ostatnich 200 lat. Mówiąc o przeszłości musimy opierać się na mniej pewnych szacunkach.
Grupa Wanga zdobywała informacje o przeszłości ziemskiego pola magnetycznego badając skały wyrzucone przez wulkany na Galapagos. To idealne miejsce, gdyż wyspy położone są na równiku. Stabilne pole magnetyczne jest dipolem, jego intensywność powinna być taka sama na obu biegunach, a na równiku powinna być o połowę mniejsza. Wang stwierdził, że jeśli pozna historyczną intensywność pola magnetycznego na równiku i na biegunach uzyska dokładne dane na temat średniej historycznej intensywności. Sam zdobył próbki z Galapagos, a próbki z Antarktyki dostarczyli mu naukowcy ze Scripps Institution of Oceanography. Naukowcy najpierw zmierzyli naturalny magnetyzm skał. Następnie podgrzali je i ochłodzili w obecności pola magnetycznego i zmierzyli ich magnetyzm po ochłodzeniu. Naturalny magnetyzm skał jest proporcjonalny do pola magnetycznego, w którym stygły. Dzięki eksperymentom naukowcy byli w stanie obliczyć średnią historyczną intensywność pola magnetycznego. Wynosiła ona około 15 mikrotesli na równiku i 30 mikrotesli na biegunach. Dzisiejsza intensywność wynosi zaś, odpowiednio, 30 i 60 mikrotesli. To oznacza, że dzisiejsza intensywność jest nienormalnie wysoka i jeśli nawet ona spadnie, to będzie to spadek do długoterminowej średniej, a nie ze średniej do zera, stwierdza Wang.
Uczony uważa, że naukowcy, którzy postulowali nadchodzące przebiegunowanie opierali się na wadliwych danych. Pochodziły one z różnych szerokości geograficznych, ale nie z równika. Dopiero Wang wziął pod uwagę dane z równika. Ponadto odkrył, że w przeszłości źle rozumiano sposób, w jaki w skałach pozostaje zapisana informacja o ziemskim magnetyzmie. Z tego też powodu przyjęto błędne założenie. Uznano, że gdy poszczególne ferromagnetyczne ziarna w skałach ulegały schłodzeniu spiny elektronów przyjmowały tę samą orientację, z której można było odczytać intensywność pola magnetycznego. Teraz wiemy, że jest to prawdą ale tylko do pewnej ograniczonej wielkości ziaren. Gdy są one większe spiny elektronów w różnych częściach ziarna przyjmują różną orientację. Wang opracował więc metodę korekty tego zjawiska i zastosował ją przy badaniach skał z Galapagos.
Wang przyznaje, że nie wie, kiedy dojdzie do kolejnego przebiegunowania. Jeśli założymy, że utrzyma się obecny spadek, to za 1000 lat intensywność pola magnetycznego będzie odpowiadała średniej długoterminowej. Wówczas może zacząć się zwiększać. Tak naprawdę nie istnieje sposób, by przewidzieć, co się stanie. Proces magnetohydrodynamiczny ma bowiem chaotyczną naturę".
« powrót do artykułu -
przez KopalniaWiedzy.pl
Sprawdzają się przewidywania naukowców, który prognozują, że już w roku 2016 średnia roczna koncentracja CO2 przekroczy 400 części na milion (ppm). W ubiegłym roku, w nocy z 7 na 8 maja, po raz pierwszy zanotowano, że średnia godzinowa koncentracja dwutlenku węgla przekroczyła 400 ppm. Tak dużo CO2 nie było w atmosferze od 800 000 – 15 000 000 lat.
W bieżącym roku możemy zapomnieć już o średniej godzinowej i znacznie wydłużyć skalę czasową. Czerwiec był trzecim z kolei miesiącem, w którym średnia miesięczna koncentracja była wyższa niż 400 części na milion.
Granica 400 ppm została wyznaczona symbolicznie. Ma nam jednak uświadomić, jak wiele węgla wprowadziliśmy do atmosfery. Z badań rdzeni lodowych wynika, że w epoce preindustrialnej średnia koncentracja dwutlenku węgla w atmosferze wynosiła 280 części na milion. W roku 1958, gdy Charles Keeling rozpoczynał pomiary na Mauna Loa w powietrzu znajdowało się 316 ppm. Wraz ze wzrostem stężenia CO2 rośnie też średnia temperatura globu. Naukowcy nie są zgodni co do tego, jak bardzo możemy ogrzać planetę bez narażania siebie i środowiska naturalnego na zbytnie niebezpieczeństwo. Zgadzają się zaś co do tego, że już teraz należy podjąć radykalne kroki w celu redukcji emisji gazów cieplarnianych. Paliwa niezawierające węgla muszą szybko stać się naszym podstawowym źródłem energii - mówi Pieter Tans z Narodowej Administracji Oceanicznej i Atmosferycznej.
Kwiecień 2014 roku był pierwszym, w którym przekroczono średnią 400 ppm dla całego miesiąca. Od maja, w związku z rozpoczęciem się najintensywniejszego okresu fotosyntezy na półkuli północnej, rozpoczął się powolny spadek koncentracji CO2, która w szczytowym momencie osiągnęła 402 ppm. Jednak przez cały maj i czerwiec średnia dzienna, a zatem i średnia miesięczna, nie spadły poniżej 400 części CO2 na milion. Eksperci uważają, że w trzecim tygodniu lipca koncentracja dwutlenku węgla spadnie poniżej 400 ppm. Do ponownego wzrostu dojdzie zimą i wzrost ten utrzyma się do maja.
Rośliny nie są jednak w stanie pochłonąć całego antropogenicznego dwutlenku węgla i wraz z każdym sezonem pozostawiają go w atmosferze coraz więcej. Dlatego też Pieter Tans przypuszcza, że w przyszłym roku pierwszym miesiącem, dla którego średnia koncentracja tego gazu przekroczy 400 ppm będzie już luty, a tak wysoki poziom CO2 utrzyma się do końca lipca, czyli przez sześć pełnych miesięcy. Od roku 2016 poziom 400 ppm będzie stale przekroczony.
Dopóki ludzie będą emitowali CO2 ze spalanego paliwa, dopóty poziom tego gazu w oceanach i atmosferze będzie się zwiększał - mówi Tans.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.