-
Similar Content
-
By KopalniaWiedzy.pl
TOI-6894 to gwiazda jakich wiele, nieduży czerwony karzeł o masie pięciokrotnie mniejszej od masy Słońca. Astronomowie nie spodziewają się, by wokół tak niewielkich gwiazd krążyły duże planety. Podczas ich formowania nie powinno być bowiem warunków do powstania wielkich planet. Jednak uczeni z University College London i University of Warwick dokonali zdumiewającego odkrycia, którego nie potrafią wytłumaczyć.
Wokół TOI-6894 krąży bowiem gazowy olbrzym TOI-6894b o średnicy większej od średnicy Saturna. To odkrycie będzie przełomem w zrozumieniu procesu formowania się gazowych olbrzymów, stwierdzają odkrywcy. Planeta TOI-6894b, zauważona dzięki Very Large Telescope, jest gazowym olbrzymem o niewielkiej gęstości. Przy średnicy większej od Saturna jej masa jest o połowę mniejsza niż olbrzyma z Układu Słonecznego. A jej gwiazda macierzysta to najmniej masywna gwiazda przy której zauważono dużą planetę.
To interesujące odkrycie. Nie rozumiemy, jak gwiazda o tak niskiej masie doprowadziła do powstania tak masywnej planety. To właśnie jeden z celów poszukiwań egzoplanet. Znajdując układy planetarne różne od Układu Słonecznego, możemy przetestować nasze modele i lepiej zrozumieć, jak powstał nas własny system planetarny, mówi doktor Vincent Van Eylen z UCL.
Zgodnie z najszerzej akceptowaną teorią dotyczącą formowania się gazowych olbrzymów, powstają one z dysku akrecyjnego wokół gwiazdy. Znajdujący się tam materiał gromadzi się, tworząc jądro, a gdy staje się ono wystarczająco masywne, zaczyna przyciągać gazy, tworzące atmosferę gazowego olbrzyma. Początkowo proces ten jest powolny, jednak gdy masa atmosfery dorównuje już masie jądra, dochodzi do gwałtownego zasysania gazu z dysku akrecyjnego, a im większa masa, tym proces ten jest szybszy.
Wedle tej teorii utworzenie się gazowych olbrzymów wokół gwiazd o niskiej masie jest trudniejsze, gdyż w ich dysku protoplanetarnym nie ma wystarczająco dużo materiału. Odkrycie TOI-6894b wskazuje, że taki model nie jest dokładny i potrzebne są alternatywne teorie. Być może formowanie się planety przebiegało stopniowo, jej jądro nie było nigdy tak masywne, by rozpoczął się proces gwałtownego zasysania gazu. Być może zaś planeta powstała w grawitacyjnie niestabilnym dysku, który rozpadł się na fragmenty i utworzył planetę. Naukowcy rozważyli oba te scenariusze i uznali, że żaden z nich nie wyjaśnia do końca powstania TOI-6894b. Kwestia więc pozostaje otwarta.
Innym interesującym aspektem nowo odkrytej planety jest temperatura jej atmosfery. Jest ona bowiem niezwykle chłodna. Większość pozasłonecznych gazowych olbrzymów to gorące Jowisze, których atmosfera ma temperaturę 1000–2000 kelwinów. Tymczasem temperatura TOI-6894b to zaledwie 420 kelwinów.
Źródło: A transiting giant planet in orbit around a 0.2-solar-mass host star, https://www.nature.com/articles/s41550-025-02552-4
« powrót do artykułu -
By KopalniaWiedzy.pl
Niewielka pokryta lawą planeta co 30,5 godziny traci tyle materiału, że wystarczyłoby go na wzniesienie Mount Everest. Astronomowie z Massachusetts Institute of Technology odkryli planetę, która szybko rozpada się na ich oczach. Położona jest w odległości około 140 lat świetlnych od Ziemi. Jest wielkości Merkurego, jednak znajduje się 20-krotnie bliżej swojej gwiazdy, niż Merkury, i obiega ją w ciągu 30,5 godziny. Przy tak niewielkiej odległości planeta prawdopodobnie pokryta jest gotującą się magmą, która ciągle odparowuje w przestrzeń kosmiczną.
Naukowcy zauważyli niezwykłą planetę za pomocą Transiting Exoplanet Survey Satellite (TESS). To teleskop kosmiczny, którego celem jest poszukiwanie pobliskich planet na podstawie ich przejścia na tle gwiazdy macierzystej. W danych z TESS uwagę uczonych zwrócił nietypowy tranzyt, którego siła sygnału zmieniała się wraz z kolejnymi przejściami planety na tle gwiazdy. Szczegółowe badania potwierdziły, że sygnał pochodzi z bliskiej gwieździe planety, która ciągnie za sobą ogon materiału na podobieństwo komety. Długość tego ogona jest gigantyczna. Rozciąga się on na 9 milionów kilometrów, niemal połowę długości orbity planety, mówi Marc Hon z Kavli Institute of Astrophysics and Space Research.
Planeta bardzo szybko traci materiał. Biorąc pod uwagę jej rozmiary i masę, astronomowie obliczają, że całkowicie rozpadnie się w ciągu 1–2 milionów lat. Mieliśmy szczęście, że ją w tym momencie zauważyliśmy. To jej ostatni oddech, dodaje Avi Shporer z TESS Science Office.
Planeta BD+05 4868 Ab została odkryta przypadkiem. Uczeni nie poszukiwali takiego szczególnego obiektu. Prowadzili typowe badania i zwrócili uwagę na niezwykły sygnał. Typowe sygnały z tranzytów to krótkie, regularne spadki jasności gwiazdy, które wskazują, że jakiś obiekt co jakiś czas przechodzi przed gwiazdą, blokując część jej światła. W przypadku BD+05 4868 Ab naukowcy spostrzegli, że o ile do spadków jasności dochodzi co 30,5 godziny, to jasność gwiazdy wraca do normy przez dłuższy czas. To wskazywało na rozciągniętą strukturę podążającą za obiektem, przesłaniającym gwiazdę. A jeszcze bardziej intrygujący był fakt, że za każdym razem kształt wykresu spadku jasności był inny, więc naukowcy stwierdzili, że ta rozciągnięta strukturą za każdym razem musi mieć inny kształt.
Taki tranzyt jest typowy dla komety z długim warkoczem. Jednak było mało prawdopodobne, by taki warkocz – który w przypadku komety składa się z gazu i lodu – przetrwał tak długo w tak niewielkiej odległości od gwiazdy. Co innego, gdyby były to ziarna minerałów odparowane z planety, wyjaśnia Marc Hon.
Naukowcy obliczają, że temperatura na powierzchni planety wynosi około 1600 stopni Celsjusza. Znajdujące się tam minerały gotują się i odparowują, tworząc długi pyłowy ogon ciągnący się za planetą. Do takiego stanu rzeczy przyczynia się niewielka, mniejsza od Merkurego, masa planety. Jest ona na tyle mała, że planeta nie jest w stanie utrzymać atmosfery, która w jakimś stopniu by ją chroniła. To bardzo mały obiekt o bardzo słabej grawitacji. Łatwo więc traci masę, co dodatkowo osłabia jego grawitację, więc traci masę jeszcze łatwiej.
BD+05 4868 Ab to zaledwie czwarta znana nam rozpadająca się planeta. Trzy poprzednie zostały odkryte ponad 10 lat temu przez Teleskop Kosmiczny Keplera. BD+05 4868 Ab ma z nich najdłuższy ogon i generuje najsilniejszy sygnał tranzytu. To zaś wskazuje, że proces rozpadu ma tam znacznie bardziej dramatyczny przebieg niż na trzech pozostałych planetach.
Dzięki temu, że nowo odkryta planeta znajduje się bardzo blisko gwiazdy macierzystej, jest idealnym celem dla Teleskopu Webba, za pomocą którego można będzie zbadać skład jej warkocza, a zatem dowiedzieć się, jaki minerały znajdują się na planecie.
Hon już tego lata rozpocznie obserwacje BD+05 4868 Ab za pomocą Webba. To unikatowa okazja, by bezpośrednio zbadać skład skalistej planety pozasłonecznej. To wiele nam powie o różnorodności takich planet i potencjalnych szansach na istnienia na nich życia, cieszy się uczony.
« powrót do artykułu -
By KopalniaWiedzy.pl
Po raz pierwszy zaobserwowano, w czasie rzeczywistym i skali molekularnej, jak powstaje woda. Naukowcy z Northwestern University zarejestrowali łączenie się atomów wodoru i tlenu. Obserwacji dokonano w ramach badań, w czasie których uczeni chcieli zrozumieć działanie palladu jako katalizatora reakcji prowadzącej do powstawania wody.
Uzyskanie wody za mocą palladu nie wymaga ekstremalnych warunków, zatem może być wykorzystane w praktyce do pozyskania wody tam, gdzie jest trudno dostępna. Na przykład na innych planetach. Przypomnijmy sobie Marka Watneya, granego przez Matta Damona w „Marsjaninie”. Spalał paliwo rakietowe, by uzyskać wodór, a następnie dodawał do niego tlen. Nasz proces jest bardzo podobny, ale nie potrzebujemy ognia i innych ekstremalnych warunków. Po prostu zmieszaliśmy pallad i gazy, mówi jeden z autorów badań, profesor Vinayak Dravid.
O tym, że pallad może być katalizatorem do generowania wody, wiadomo od ponad 100 lat. To znane zjawisko, ale nigdy go w pełni nie rozumieliśmy, wyjaśnia doktorant Yukun Liu, główny autor badań. Młody uczony dodaje, że do zrozumienia tego procesu konieczne było połączenie analizy struktury w skali atomowej oraz bezpośredniej wizualizacji. Wizualizowanie całego procesu było zaś niemożliwe.
Jednak w styczniu 2024 roku na łamach Science Advances profesor Dravid opisał nowatorką metodę analizowania molekuł gazu w czasie rzeczywistym. Uczony wraz z zespołem stworzyli ultracienką membranę ze szkła, która więzi molekuły gazu w reaktorach o strukturze plastra miodu. Uwięzione atomy można obserwować za pomocą transmisyjnego mikroskopu elektronowego w próżni wysokiej.
Za pomocą nowej metody uczeni zaobserwowali, jak atomy wodoru wnikają do próbki palladu, rozszerzając jej sieć atomową. Po chwili – ku zaskoczeniu uczonych – na powierzchni palladu pojawiły się krople wody. Myślę, że to najmniejsze kiedykolwiek zaobserwowane krople. Tego się nie spodziewaliśmy. Na szczęście nagraliśmy to i możemy udowodnić, że nie oszaleliśmy, cieszy się Liu.
Po potwierdzeniu, że pojawiła się woda, naukowcy zaczęli szukać sposobu na przyspieszenie reakcji. Zauważyli, że najszybciej zachodzi ona, gdy najpierw doda się wodór, później tlen. Atomy wodoru wciskają się między atomy palladu, rozszerzając próbkę. Gdy do całości zostaje dodany tlen, wodór opuszcza pallad, by połączyć się z tlenem, a próbka kurczy się do wcześniejszych rozmiarów.
Badania prowadzone były w nanoskali, ale wykorzystanie większych kawałków palladu pozwoliłoby na uzyskanie większej ilości wody. Autorzy badań wyobrażają sobie, że w przyszłości astronauci mogliby zabierać ze sobą pallad wypełniony wodorem. Gdy będą potrzebowali wody, dodadzą tlen. Pallad jest drogi, ale nasza metoda go nie zużywa. Jedyne, co jest tutaj zużywane, to gaz. A wodór to najpowszechniej występujący gaz we wszechświecie. Po reakcji pallad można wykorzystywać ponownie, mówi Liu.
« powrót do artykułu -
By KopalniaWiedzy.pl
Zachodzące w przestrzeni kosmicznej procesy, w czasie których powstają gwiazdy, mogą prowadzić też do pojawienia się obiektów o masie nieco większej od Jowisza. Badacze korzystający z Teleskopu Webba odkryli w mgławicy NGC 1333 aż sześć takich niezwykłych obiektów o masie planety, ale niepowiązanych grawitacyjne z żadną gwiazdą. Powstały w procesie takim, jak powstają gwiazdy, czyli zapadnięcia się gazu i pyłu, ale ich masa odpowiada masie planet. Badamy granice procesów formowania się gwiazd. Jeśli masz obiekt, który wygląda jak młody Jowisz, to czy jest możliwe, by w odpowiednich warunkach przekształcił się w gwiazdę? To ważne pytanie w kontekście zrozumienia powstawania gwiazd i planet, mówi główny autor badań, astrofizyk Adam Langeveld z Uniwersytetu Johnsa Hopkinsa.
Dane z Webba sugerują, że odkryte obiekty mają masę od 5 do 10 razy większą niż masa Jowisza. To oznacza, że są jednymi z najlżejszych znanych nam obiektów, które powstały w procesach, w jakich powstają gwiazdy oraz brązowe karły, obiekty o masie 13–80 mas Jowisza, zbyt małej, by zaszła przemiana wodoru w hel.
Wykorzystaliśmy niezwykła czułość Webba w zakresie podczerwieni, by odnaleźć najsłabiej świecące obiekty w młodej gromadzie gwiazd. Poszukujemy odpowiedzi na podstawowe dla astronomii pytanie o najmniej masywny obiekt podobny do gwiazdy. Okazuje się, że najmniejsze swobodne obiekty powstające w procesach takich, jak gwiazdy, mogą mieć masę taką, jak gazowe olbrzymy krążące wokół pobliskich gwiazd, wyjaśnia profesor Ray Jayawardhana, który nadzorował badania. Nasze obserwacje potwierdzają, że obiekty o masie planetarnej mogą powstawać w wyniku dwóch procesów. Jeden to kurczenie się chmur pyłu i gazu – czyli tak jak tworzą się gwiazdy – drugi zaś to powstawanie planet w znajdującym się wokół gwiazdy dysku akrecyjnym z pyłu i gazu. Tak właśnie powstał Jowisz i inne planety Układu Słonecznego, dodaje Jayawardhana.
Najbardziej intrygującym z obiektów znalezionych przez Webba jest ten najlżejszy, o masie 5-krotnie większej od Jowisza. Obecność wokół niego dysku akrecyjnego wskazuje, że obiekt najprawdopodobniej uformował się takim procesie, w jakim powstają gwiazdy. Sam dysk również interesuje badaczy. Nie można wykluczyć, że mogą z nim pojawić się planety. To może być żłobek miniaturowego układu planetarnego, znacznie mniejszego niż nasz układ, dodaje Alexander Scholz, astrofizyk z University of St. Andrews.
Co interesujące, Webb nie zarejestrował – a ma takie możliwości – żadnego obiektu o masie mniejszej niż 5 mas Jowisza. Może to oznaczać dolną granicę masy obiektów formujących się z zapadnięcia chmur pyłu i gazu.
Autorzy badań przeanalizowali też profil światła wszystkich nowo znalezionych obiektów oraz dokonali ponownej analizy profilu światła 19 znanych brązowych karłów. Odkryli przy tym brązowego karła, który ma towarzysza o masie planety. To rzadkie znalezisko rzuca wyzwanie naszym modelom tworzenia się układów podwójnych.
W najbliższych miesiącach naukowcy chcą zająć się analizą atmosfer nowo odkrytych obiektów i porównać je do brązowych karłów oraz gazowych olbrzymów.
« powrót do artykułu -
By KopalniaWiedzy.pl
Ponad połowa największych jezior na świecie traci wodę, wynika z badań przeprowadzonych przez międzynarodowy zespół naukowy z USA, Francji i Arabii Saudyjskiej. Przyczynami tego stanu rzeczy są głównie globalne ocieplenie oraz niezrównoważona konsumpcja przez człowieka. Jednak, jak zauważają autorzy badań, dzięki opracowanej przez nich nowej metodzie szacunku zasobów wody, trendów oraz przyczyn jej ubywania, można dostarczyć osobom odpowiedzialnym za zarządzanie informacji, pozwalającymi na lepszą ochronę krytycznych źródeł wody.
Przeprowadziliśmy pierwsze wszechstronne badania trendów oraz przyczyn zmian ilości wody w światowych jeziorach, wykorzystując w tym celu satelity oraz modele obliczeniowe, mówi główny autor badań, Fangfang Yao z Uniwersytetu Kalifornijskiego w Boulder (CU Boulder). Mamy dość dobre informacje o słynnych jeziorach, jak Morze Kaspijskie, Jezioro Aralskie czy Salton Sea, jeśli jednak chcemy dokonać szacunków w skali globalnej, potrzebujemy wiarygodnych informacji o poziomie wód i objętości jeziora. Dzięki tej nowej metodzie możemy szerzej spojrzeć na zmiany poziomu wód jezior w skali całej planety, dodaje profesor Balaji Rajagopalan z CU Boulder.
Naukowcy wykorzystali 250 000 fotografii jezior wykonanych przez satelity w latach 1992–2020. Na ich podstawie obliczyli powierzchnię 1972 największych jezior na Ziemi. Użyli też długoterminowych danych z pomiarów poziomu wód z dziewięciu satelitów. W przypadku tych jezior, co do których brak było danych długoterminowych, wykorzystano pomiary wykorzystane za pomocą bardziej nowoczesnego sprzętu umieszczonego na satelitach. Dzięki połączeniu nowych danych z długoterminowymi trendami byli w stanie ocenić zmiany ilości wody w jeziorach na przestrzeni kilku dziesięcioleci.
Badania pokazały, że 53% największych jezior na świecie traci wodę, a jej łączny ubytek jest 17-krotnie większy niż pojemność największego zbiornika na terenie USA, Lake Meads. Wynosi zatem około 560 km3 wody.
Uczeni przyjrzeli się też przyczynom utraty tej wody. W przypadku około 100 wielkich jezior przyczynami były zmiany klimatu oraz konsumpcja przez człowieka. Dzięki tym badaniom naukowcy dopiero teraz dowiedzieli się, że za utratą wody w jeziorze Good-e-Zareh w Afganistanie czy Mar Chiquita w Argentynie stoją właśnie takie przyczyny. Wśród innych ważnych przyczyn naukowcy wymieniają też odkładanie się osadów. Odgrywa ono szczególnie ważną rolę w zbiornikach, które zostały napełnione przed 1992 rokiem. Tam zmniejszanie się poziomu wody jest spowodowane głównie zamuleniem.
Podczas gdy w większości jezior i zbiorników wody jest coraz mniej, aż 24% z nich doświadczyło znacznych wzrostów ilości wody. Są to głównie zbiorniki znajdujące się na słabo zaludnionych terenach Tybetu i północnych części Wielkich Równin oraz nowe zbiorniki wybudowane w basenach Mekongu czy Nilu.
Autorzy badań szacują, że około 2 miliardów ludzi mieszka na obszarach, gdzie w zbiornikach i jeziorach ubywa wody, co wskazuje na pilną potrzebę uwzględnienia takich elementów jak zmiany klimatu, konsumpcja przez człowieka czy zamulanie w prowadzonej polityce. Jeśli na przykład konsumpcja przez człowieka jest ważnym czynnikiem prowadzącym do utraty wody, trzeba wprowadzić mechanizmy, które ją ograniczą, mówi profesor Ben Livneh. Uczony przypomina jezioro Sevan w Armenii, w którym od 20 lat poziom wody rośnie. Autorzy badań łączą ten wzrost z wprowadzonymi i egzekwowanymi od początku wieku przepisami dotyczącymi sposobu korzystania z wód jeziora.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.