-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Odkrycie nowej komety poruszyło środowisko astronomów, gdyż istnieje prawdopodobieństwo, że pochodzi ona spoza Układu Słonecznego. Jeśli tak, to jest ona drugim, po słynnym 1I/Oumuamua, obiekt, który odwiedził Układ Słoneczny.
Kometę odkrył 30 sierpnia 2019 roku Gienadij Borisow w obserwatorium MARGO na Krymie. Na razie oznaczono ją jako C/2019 Q4. Jeśli się potwierdzi, że pochodzi spoza Układu Słonecznego zostanie nazwany zgodnie z nomenklaturą stworzoną przy okazji Oumuamua, gdzie „I” oznacza „Interstellar” (Międzygwiezdny), a „1” jest liczbą porządkową przypisaną pierwszemu takiemu obiektowi.
C/2019 Q4 wciąż porusza się w kierunku Słońca, jednak wstępne badania trajektorii wskazują, że nie zbliży się do naszej gwiazdy na odległość mniejszą niż Mars, a do Ziemi podleci nie bliżej niż 300 milionów kilometrów.
Wkrótce po odkryciu komety używany przez NASA system Scout automatycznie zakwalifikował ją jako obiekt o możliwym pochodzeniu pozasłonecznym. Davide Farnocchia z należącego do NASA Center for Near-Earth Object Studies nawiązał współpracę z europejskim Near-Earth Object Coordination Center w celu wykonania dodatkowych obserwacji, a następnie przeanalizował je ze specjalistami z Minor Planet Center. Dzięki temu wiemy, że obecnie kometa znajduje się w odległości 420 milionów kilometrów od Słońca, a 8 grudnia bieżącego roku osiągnie peryhelium w odległości 300 milionów kilometrów.
Obecnie kometa porusza się z dużą prędkością, wynoszącą 150 000 km/h, co jest wartością znacznie wyższą od prędkości typowych komet okrążających Słońce i znajdujących się w takiej właśnie odległości. Ta wielka prędkość wskazuje, że kometa prawdopodobnie pochodzi spoza Układu Słonecznego oraz że go opuści i poleci w przestrzeń międzygwiezdną, mówi Farnocchia.
Eksperci wyliczyli też, że 26 października kometa przetnie płaszczyznę ekliptyki planet słonecznych pod kątem 40 stopni. C/2019 Q4 będzie widoczny jeszcze przez wiele miesięcy, jednak do jego obserwacji potrzebny będzie profesjonalny sprzęt. "Obiekt osiągnie najwięszą jasność w połowie grudnia i będzie go można obserwować za pomocą średniej wielkości urządzeń do kwietnia 2020 roku. Użytkownicy dużych profesjonalnych teleskopów będą mogli prowadzić obserwacje do października 2020", mówi Farnocchia.
Astronomowie z Uniwersytetu Hawajskiego określili wielkość jądra komety na 2–16 kilometrów średnicy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Łazik Perseverance rozpoczął tworzenie na Marsie zapasowego magazynu próbek. W miejscu zwanym Three Forks złożona została tytanowa tuba z próbkami marsjańskich skał. W ciągu najbliższych 2 miesięcy łazik pozostawi tam w sumie 10 pojemników, tworząc pierwszy w historii skład próbek na innej planecie.
Za 10 lat próbki mają trafić na Ziemię w ramach misji Mars Sample Return. Plan ich przywiezienia zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas śmigłowce zabiorą próbki ze składu zapasowego i dostarczą je do pojazdu. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który zawiezie je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przetransportuje próbki na Ziemię. W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033.
Obecnie Perseverance ma na pokładzie 17 pojemników z próbkami, w tym 1 z próbką atmosfery. Pierwszy pojemnik złożony w Three Forks zawiera skały pobrane 31 stycznia 2022 roku na obszarze South Séítah w Kraterze Jezero.
Cały proces składowania próbki trwał godzinę. Po tym, gdy pojemnik wypadł spod podwozia łazika, inżynierowie musieli sprawdzić, czy nie znajdzie się pod kołami Perseverance, gdy ten będzie odjeżdżał, ani czy nie ustawił się pionowo. Pojemniki na jednym końcu są płaskie, co ma ułatwić ich przyszłe zebranie. Jednak przez to istnieje ryzyko, że ustawią się pionowo. Podczas testów naziemnych działo się tak w 5% przypadków.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Komety to jedna z najstarszych obiektów w Układzie Słonecznym. Te lodowe pozostałości po formowaniu się planet zostały wyrzucone przez grawitację na obrzeża Układu Słonecznego. Ich rezerwuarem jest Obłok Oorta, hipotetyczny obłok materiału znajdującego się w odległości od kilku tysięcy do 100 000 jednostek astronomicznych od Słońca.
Tym, co najbardziej przyciąga naszą uwagę w kometach jest ich spektakularny warkocz ciągnący się na wiele milionów kilometrów. Jego źródłem jest jądro komety, składające się z lodu, pyłu i okruchów skalnych. Jądra większości znanych komet liczą kilka lub kilkanaście kilometrów średnicy. Teleskop Hubble'a odkrył właśnie prawdziwego giganta wśród jąder komet – olbrzyma o średnicy około 140 kilometrów.
Cometa C/2014 UN271 (Bernardinelli-Bernstein) została odkryta przez Pedro Bernardinellego i Gary'ego Bernsteina w archiwalnych zdjęciach z Dark Energy Survey w Cerro Tololo Inter-American Observatory w Chile. Po raz pierwszy zaobserwowano ją w 2010 roku. A w bieżącym roku naukowcy wykorzystali Teleskop Hubble'a oraz radioteleskopy, by odróżnić jej stałe jądro od otaczającej je chmury pyłu. Okazało się, że mają do czynienia z największym znanym jądrem komety. Obecnie C/2014 UN271znajduje się w odległości mniejszej niż 3,2 miliarda kilometrów od Słońca, a za klika milionów lat ponownie trafi do Obłoku Oorta.
Aby uświadomić sobie, z jakim gigantem mamy do czynienia, musimy wiedzieć, że średnica jądra C/2014 UN271 jest około 50-krotnie większa niż średnica typowej komety. Słynna kometa Halleya ma jądro o średnicy 11 kilometrów, zaś jądro komety Hale-Boppa ma 74 km średnicy. Dotychczasową rekordzistką była kometa C/2002 z jądrem o średnicy 96 kilometrów. Teraz zaś mówimy o 140-kilometrowym jądrze.
Profesor David Jewitt Uniwersytetu Kalifornijskiego w Los Angeles, współautor badań nad C/2014 UN271 mówi, że ta kometa to wierzchołek góry lodowej olbrzymiego zbioru tysięcy komet znajdujących się w odległych obszarach Układu Słonecznego, które odbijają zbyt mało światła, byśmy mogli je dostrzec. Zawsze podejrzewaliśmy, że ta kometa ma wielkie jądro, gdyż widzimy ją tak jasną z tak dużej odległości. Teraz mamy potwierdzenie.
"To niezwykły obiekt, biorąc pod uwagę fakt, jak bardzo jest aktywny w tak dużej odległości od Słońca. Domyślaliśmy się, że jądro może być całkiem duże, ale musieliśmy to potwierdzić, dodaje główny autor artykułu naukowego, Man-To Hui z Uniwersytetu Nauki i Technologii w Taipa w Macau. Naukowcy wykorzystali więc pięć zdjęć wykonanych w styczniu bieżącego roku przez Hubble'a.
Głównym problemem było odróżnienie jądra od otaczającego go gazu i pyłu. Kometa jest obecnie zbyt daleko od Ziemi, by można było ten problem rozwiązać wizualnie. Jednak w danych z Hubble'a widać pojaśnienia w miejscu, gdzie znajduje się jądro. Hui i jego zespół stworzyli komputerowy model warkocza komety, który pasował do obrazów z Hubble'a. Następnie poświatę z warkocza odjęto od całości, pozostawiając samo tylko światło odbijane przez jądro.
Uzyskane w ten sposób wyniki porównano z wcześniejszymi pomiarami dokonanymi za pomocą radioteleskopu ALMA (Atacama Large Millimeter/submilimeter Array). Wszystkie te dane łącznie pozwoliły na określenie średnicy jądra i jego współczynnika odbicia. Okazało się, że dane z Hubble'a odnośnie wielkości jądra komety są zgodne z wcześniejszymi danymi z ALMA, jednak jądro jest ciemniejsze niż sądzono. Jest wielkie i ciemniejsze od węgla, mówi Jewitt.
Kometa C/2014 UN271 od ponad miliona lat podąża w kierunku Słońca. Pochodzi prawdopodobnie z Obłoku Oorta, ale – podobnie jak inne komety – nie narodziła się w nim, ale została tam wypchnięta przez oddziaływania grawitacyjne olbrzymich planet w czasach, gdy orbity Jowisza i Saturna wciąż ewoluowały.
Kometa Bernardinelli-Bernstein znajduje się na eliptycznej orbicie, a jej podróż wokół Słońca trwa około 3 milionów lat. Obecnie znajduje się w odległości około 3 godzin świetlnych od Słońca, a w najdalszym punkcie orbity od naszej gwiazdy dzieli ją około pół roku świetlnego.
Obłok Oorta to hipotetyczna struktura, której istnienie jako pierwszy postulował holenderski astronom Jan Oort. Masa Obłoku może sięgać nawet 20-krotności masy Ziemi. Jednak samego obłoku nie możemy zaobserwować, gdyż tworzący go materiał, w tym olbrzymia liczba komet, jest zbyt słabo widoczny, byśmy mogli go bezpośrednio obserwować. Jeśli Obłok istnieje, to jest największą strukturą w Układzie Słonecznym i jest – przynajmniej przy obecnym stanie techniki – całkowicie dla nas niewidzialny.
Wiemy jednak, że komety przybywają do wewnętrznych obszarów Układu Słonecznego z każdej strony, a to sugeruje, że Obłok Oorta ma kształt sfery. Jeśli on rzeczywiście istnieje, to sondy Voyager mogą do niego dotrzeć za około 300 lat, a kolejnych 30 000 lat zajmie im przelot przez Obłok.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Prekolumbijska kultura Hopewell była szeroko rozpowszechniona na wschodzie dzisiejszych USA. Pojawiła się ok. 100 r. p.n.e. i zniknęła ok. 500 roku n.e. Naukowcy z University of Cincinnati znaleźli dowody wskazujące, że do jej upadku mogła przyczynić się kometa, która zniszczyła wioski i otaczające je lasy. Byłby to więc drugi znany przypadek – po Tall el-Hammam, identyfikowanym z Sodomą – gdy ludzkie osady zostały zniszczone w wyniku katastrofy kosmicznej.
Uczeni z Cincinnati informują na łamach Nature, że na położonych wzdłuż doliny rzeki Ohio 11 stanowiskach archeologicznych kultury Hopewell, znajdujących się w 3 stanach, odkryli dowody na liczne eksplozje w atmosferze. Znaleziono bowiem mikrosferule bogate w żelazo i siarkę oraz nietypową koncentrację irydu i platyny. Odkryto też warstwę węgla drzewnego, świadczącą o oddziaływaniu wysokich temperatur. Datowanie radiowęglowa wykazało, że badana warstwa pochodzi z lat 252–383. W okresie tym zostało udokumentowanych 69 komet bliskich ziemi. Naukowcy zauważają też, że po tym okresie w pobliżu miejsc znalezienia nietypowej warstwy zaczęto wznosić konstrukcje ziemne w kształcie komety. Wszystkie te dowody mają wskazywać, że dolina Ohio i istniejące tam wsie zostały zbombardowane materiałem niesionym przez kometę.
Wiemy, że kultura Hopewell przetrwała katastrofę. Mogła się ona jednak przyczynić do jej upadku. Już bowiem około roku 500 dochodzi do zaniknięcia wymiany kulturowej i handlowej, nikt nie wznosi już kopców, nie pojawią się nowe wytwory sztuki.
Stanowiska archeologiczne kultury Hopewell zawierają nietypowo wysoką koncentrację i zróżnicowanie meteorytów w porównaniu do stanowisk innych kultur. Mamy tutaj meteoryty żelazne, kamienne i żelazno–kamienne. Rozkład przestrzenny tych meteorytów, ich kontekst i różny skład był dotychczas wyjaśniany hipotezą o wykorzystywaniu ich w długodystansowej wymianie handlowej. Jest jednak możliwe, że wiele z tych meteorytów pochodzi z pojedynczego wydarzenia. Komety zawierają wiele meteoroidów o zróżnicowanej budowie, czytamy w Nature.
W trakcie badań uczeni stwierdzili, że epicentrum bombardowania materiałem przyniesionym przez kometę znajdowało się w lub w pobliżu stanowiska archeologicznego Turner w hrabstwie Hamilton położonym na południowym zachodzie stanu Ohio. Wydaje się, że materiał spadał w z północnego zachodu na południowy zachód. Co interesujące położone niedaleko kopce, zwane Milford Earthworks, mają taką właśnie orientację.
W miarę oddalania się od stanowiska Turner koncentracja mikrosferuli spada. Znajdujemy je jednak ponad 200 kilometrów dalej na południe, w Indian Fort Mountain. Zdaniem naukowców, mikrosferule te to materiał wzbity w powietrze wskutek oryginalnego bombardowania. Jego rozkład bardziej na linii północ-południe niż oryginalny przebieg uderzenia na linii północny zachód – południowy zachód można wyjaśnić przeważającymi w Ameryce Północnej frontami pogodowymi przechodzącymi z zachodu na wschód. Zdaniem naukowców epicentrum bombardowania objęło około 500 km2, a cały obszar, który ucierpiał w wyniku przelotu komety to około 14 900 km2.
Nie wiemy, czy ktoś wówczas zginął. Jednak po tym wydarzeniu przedstawiciele kultury Hopewell zbierali meteoryty i wykonywali z nich przedmioty, które były później wkładane do grobów zmarłych. W epicentrum wydarzenia zaczęto wznosić kopce w kształcie komety, a symbolika i tradycja ustna Hopewell została odziedziczona przez następców, którzy opowiadają o kosmicznej katastrofie, stwierdzają autorzy badań.
O Lenipinšia, rogatym wężu lecącym po niebie i zrzucającym skały, opowiada lud Myaamia, w języku Szaunisów słowo Tekoomsē odnosi się do komety znanej jako Podniebna Pantera, a Irokezi opowiadają o Dajoji, Podniebnej Panterze, która miała moc niszczenia lasów. W opowieściach Ottawów znajdziemy historię o dniu, w którym słońce spadło na Ziemię, a Huronowe i Wyandoci wspominają czasy, gdy przez niebo przetaczała się czarna chmura, zniszczona strzałą przez Hehnoha.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Pedro Bernardinelli i Gary Bernstein z Univeristy of Pennsylvania odkryli gigantyczną kometę, która zmierza w stronę Słońca. Już w roku 2031 zbliży się ona na najmniejszą odległość od naszej gwiazdy. Kometa Bernardinelli-Bernstein, oficjalnie nazwana C/2014 UN271, została zauważona podczas analizy zdjęć z jednego z najdoskonalszych aparatów wykorzystywanych w astronomii.
Amerykańscy naukowcy analizowali obrazy z lat 2013–2019 wykonane przez 570-megapikselowy Dark Energy Camera (DECam) umieszczony na Victor M. Blanco Telscope w Chile. Urządzenie jest wykorzystywane do monitorowania około 300 milionów galaktyk, a uzyskane dane służą do lepszego zrozumienia ciemnej materii. Uczeni, analizując około 80 000 obrazów, znaleźli na nich ponad 800 obiektów z Układu Słonecznego. Na 32 z nich zauważyli olbrzymią kometę, którą po raz pierwszy widać na zdjęciach z roku 2014.
Opierając się na ilości światła odbijanego przez kometę Bernardinelli-Bernstein, jej odkrywcy stwierdzili, że ma ona średnicę 100–200 kilometrów. To około 10-krotnie więcej niż średnica przeciętnej komety. Masa olbrzyma jest zaś około 1000-krotnie większa niż masa przeciętnej komety. To zaś oznacza, że mamy do czynienia z największą kometą odkrytą w czasach współczesnych oraz z największym znanym nam obiektem pochodzącym z Obłoku Oorta.
Na pierwszym z wykonanych zdjęć kometa znajduje się w odległości około 25 jednostek astronomicznych (j.a.) od Słońca, czyli mniej więcej w takiej odległości jak Neptun. Uczeni oceniają jednak, że swoją podróż rozpoczęła z Obłoku Oorta, znajdującego się około 40 000 j.a. od naszej gwiazdy. Obecnie kometa Bernardinelli-Bernstein znajduje się w odległości 20 j.a. od Słońca. Z ostatnich zdjęć wynika, że jej powierzchnia na tyle się rozgrzała, że pojawił się warkocz. Jego utworzenie się pozwala oficjalnie zakwalifikować obiekt jako kometę.
Pomimo olbrzymich rozmiarów i masy, nie musimy przejmować się obecnością komety. Z wyliczeń jej trajektorii wynika, że podleci ona do Słońca nie bliżej niż na odległość 11 j.a. Dla przypomnienia – jednostka astronomiczna to średnia odległość pomiędzy Ziemią a Słońcem. Bernardinelli-Bernstein nie zbliży się więc do Ziemi bliżej niż Saturn. To na tyle duża odległość, że giganta najprawdopodobniej nie będzie można obserwować gołym okiem.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.