Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Mars Science Laboratory leci w kierunku Marsa

Rekomendowane odpowiedzi

NASA odebrała sygnał z pojazdu Mars Science Laboratory. Oznacza to, że po oddzieleniu się od rakiety nośnej pojazd działa bez zakłóceń i kontynuuje misję.

Pojazd jest w doskonałej kondycji i leci w kierunku Marsa. Jesteśmy bardzo szczęśliwi. Myślę, że to będzie wspaniała misja. To bardzo ważny krok w kierunku realizacji nadrzędnego celu NASA, jakim jest poszukiwanie życia we wszechświecie - mówi John Grotzinger, naukowiec pracujący przy projekcie Mars Science Laboratory.

Uczony dodaje, że obecna misja jest stanowi pomost pomiędzy wcześniejszymi ekspedycjami (Mars Exploration Rovers), których celem było poszukiwanie wody na Marsie oraz przyszłymi misjami, które będą szukały życia. Obecna wyprawa skupi się na poszukiwaniu miejsc, w których w przeszłości mogło powstać życie - dodaje Grotzinger.

Na pokładzie Mars Science Laboratory znajduje się wiele urządzeń, a najważniejszym jest łazik Curiosity (Ciekawość). To wielkie ruchome laboratorium, które w ciągu 23 miesięcy po wylądowaniu na powierzchni Czerwonej Planety przeanalizuje dziesiątki próbek marsjańskiego gruntu. Ma on zbadać znacznie większą powierzchnię planety niż którykolwiek z dotychczasowych łazików.

Curiosity to najbardziej zaawansowane laboratorium, jakie kiedykolwiek wysłano na Marsa. Jest ono 10-krotnie cięższe niż wcześniejsze łaziki, a jego zadaniem jest stwierdzenie, czy w przeszłości na Marsie mogło istnieć życie.

Curiosity został wyposażony w zamocowaną na maszcie kamerę, dzięki której operatorzy z Ziemi będą mogli decydować, gdzie łazik ma się udać. Urządzenie będzie zbierało próbki gruntu i umieszczało je w niesionych przez siebie instrumentach analitycznych.

Pojazd jest w stanie pokonywać przeszkody o wysokości do 65 centymetrów. Łazik może dziennie przebyć nawet 200 metrów. Łazik napędzany jest generatorem radioizotopowym, wykorzystującym rozpad plutonu-238. Paliwa wystarczy mu na marsjański rok (687 dni ziemskich) lub dłużej.

Curiosity będzie wysyłał sygnały do pozostającego na orbicie pojazdu, który z kolei przekaże je do znajdujących się na Ziemi anten systemu Deep Space Networks.

Łazik wyląduje u podnóża gór znajdujących się w kraterze Gale. Miejsce lądowania zostało wybrane przez zespół ponad 100 naukowców, którzy podczas serii spotkań wybrali je spośród ponad 30 innych możliwych lokalizacji. Uczeni zdecydowali, że prawdopodobnie płynęła tam kiedyś woda, a naniesione przez nią osady zdradzą nam wiele tajemnic z przeszłości Czerwonej Planety.

Lądowanie łazika - ze względu na jego wymiary i wagę - będzie bardzo skomplikowanym przedsięwzięciem, które pozwoli rozwinąć przyszłe systemu lądowania i startu pojazdów z powierzchni Marsa. Dzięki temu możliwe będzie np. przywiezienie marsjańskiego gruntu na Ziemię.

Mars Science Laboratory wejdzie w atmosferę Marsa i będzie tam wykonywał manewry podobne do tych, jakie były wykonywane przez załogi promów kosmicznych. Na trzy minuty przed  pozostawieniem łazika zostaną otwarte spadochrony, które spowolnią pojazd. Następnie zostaną odpalone silniki utrzymujące orbiter nad powierzchnią planety, na którą zostanie opuszczony Curiosity.

W kwietniu 2004 roku NASA poinformowała, że zbiera propozycje instrumentów naukowych, jakie mają znaleźć się na pokładzie Mars Science Laboratory. W tym samym roku wybrano osiem z nich. Później podpisano też umowy z Rosją i Hiszpanią, na podstawie których na pokład pojazdu trafiły instrumenty dostarczone przez te kraje.

Zestaw o nazwie Sample Analysis at Mars składa się z chromatografu gazowego, spektrometru masowego oraz spektometru laserowego, które będą analizowały próbki gruntu i atmosfery. Są one w stanie zidentyfikować wiele związków organicznych i określić stosunek wchodzących w ich skład poszczególnych izotopów.

Z kolei CheMin to instrument wykorzystujący rentgenografię strukturalną i rentgenowską analizę fluoroscencyjną. Dzięki niemu poznamy rodzaje oraz skład mineralny skał.

Za wykonanie zdjęć o bardzo wysokiej rozdzielczości będzie odpowiedzialny, umieszczony na ramieniu Curiosity, Mars Hand Lens Imager. Na fotografiach zobaczymy struktury mniejsze od grubości ludzkiego włosa. Instrument ten pokaże nam również obiekty, do których nie będzie mogło sięgnąć ramię łazika.

Na ramieniu znalazł się też Alpha Particle X-ray Spectrometer for Mars Science Laboratory. Jego zadaniem jest określenie proporcji poszczególnych elementów składowych skał.

Curiosity wykorzysta też Mars Science Laboratory Mars Camera. To kamera o wysokiej rozdzielczości zamontowana na wysokości ludzkiego wzroku. Będzie fotografowała w kolorze otoczenie łazika. Jest również zdolna do nagrywania materiału wideo. Kamera sfotografuje ponadto próbki zbierane przez ramię robota.

ChemCam wykorzysta impulsy laserowe do odparowywania cienkiej warstwy materiału ze skał i gruntu. Wchodzący w skład tego instrumentu spektrometr określi, jakie atomy uległy odparowaniu, a zamontowany teleskop dostarczy szczegółowych obrazów obszaru oświetlonego przez laser.

Za badanie poziomu promieniowania radioaktywnego będzie odpowiedzialny Radiation Assessment Detector. Dostarczone przezeń dane będą niezwykle ważne dla planowania załogowej misji na Marsa oraz pozwolą oszacować, z jakim prawdopodobieństwem Mars może podtrzymać życie.

Na dwie minuty przed lądowaniem Curiosity instrument Mars Descent Imager nakręci kolorowy film wideo o wysokiej rozdzielczości. Dzięki niemu naukowcy zobaczą najbliższe okolice i będą mogli zdecydować o trasie łazika.

Hiszpańskie Ministerstwo Nauki i Edukacji dostarczyło Rover Environmental Monitoring Station, która mierzy ciśnienie atmosferyczne, temperaturę, wilgotność, prędkość wiatru i poziom promieniowania ultrafioletowego.

Do Rosyjskiej Federalnej Agencji Kosmicznej należy Dynamic Albedo of Neutrons, instrument zdolny do mierzenia poziomu wodoru do głębokości 1 metra pod powierzchnią planety.

Do każdego z instrumentów naukowych został przypisany zespół naukowców, którzy będą odbierali i przetwarzali uzyskane dane.

Curiosity wyposażono ponadto w urządzenia wizyjne przydatne podczas nawigowania i unikania przeszkód, system do usuwania pyłu ze skał, pobierania próbek gruntu, wiercenia w skałach, sortowania materiału pod względem wielkości ziaren oraz dostarczania go do poszczególnych instrumentów analitycznych.

Curiosity ma wylądować na powierzchni Marsa 5 sierpnia 2012 roku.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Łaziki pracujące na Marsie czy Księżycu, mierzą się z wieloma problemami. Jednym z nich jest ryzyko utknięcia w grząskim gruncie. Gdy tak się stanie operatorzy podejmują serię delikatnych manewrów, by pojazd wydobyć. Nie zawsze się to udaje. Łazik Spirit zakończył misję jako stacjonarna platforma badawcza po tym, jak utknął w luźnym piasku. Czy takim wydarzeniom da się zapobiec? Inżynierowie z University of Wisconsin-Madison informują o znalezieniu poważnego błędu w procedurach testowania łazików. Jego usunięcie może spowodować, że pojazdy na Marsie i Księżycu będą narażone na mniejsze ryzyko.
      Błąd ten polega na przyjęciu zbyt optymistycznych i uproszczonych założeń co do tego, jak łaziki zachowują się poza Ziemią. Ważnym elementem testów naziemnych takich pojazdów jest sprawdzenie, w jaki sposób mogą się one poruszać po luźnym podłożu. Na Księżycu grawitacja jest 6-krotnie mniejsza niż na Ziemi, więc przez dekady, testując łaziki, naukowcy tworzyli prototypy o masie sześciokrotnie mniejszej niż łazik docelowy i testowali je na pustyni. Jednak ta metoda pomijała pewien istotny szczegół – wpływ grawitacji na piasek.
      Profesor Dan Negrut i jego zespół przeprowadzili symulacje, które wykazały, że Ziemia przyciąga ziarenka piasku silniej niż Mars czy Księżyc. Dzięki temu piasek na Ziemi jest bardziej zwarty. Jest mniejsze prawdopodobieństwo, że ziarna będą się pod nimi przesuwały. Jednak na Księżycu piasek jest luźniejszy, łatwiej się przemieszcza, więc obracające się koła trafiają na mniejszy opór. Przez to pojazdowi trudniej się w nim poruszać.
      Jeśli chcemy sprawdzić, jak łazik będzie sobie radził na Księżycu, musimy rozważać nie tylko wpływ grawitacji na pojazd, ale również wpływ grawitacji na piasek. Nasze badania pokazują, jak ważne są symulacje do badania możliwości jezdnych łazika na luźnym podłożu, wyjaśnia uczony.
      Uczeni dokonali swojego odkrycia podczas prac związanych z misją łazika VIPER, który ma trafić na Księżyc. We współpracy z naukowcami z Włoch stworzyli silnik Chrono, służący do symulacji zjawisk fizycznych, który pozwala na szybkie modelowanie złożonych systemów mechanicznych. I zauważyli istotne różnice pomiędzy wynikami testów VIPERA na Ziemi, a wynikami symulacji. Po przeanalizowaniu problemu znaleźli wspomniany błąd w procedurach testowych.
      Chrono to produkt opensource'owy, z którego skorzystały już setki firm i organizacji. Pozwala on lepiej zrozumieć najróżniejsze złożone mechanizmy, od mechanicznych zegarków po czołgi jeżdżące poza utwardzonymi drogami.
      Źródło: A Study Demonstrating That Using Gravitational Offset to Prepare Extraterrestrial Mobility Missions Is Misleading

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Góra Jezero Mons, znajdująca się na obrzeżach krateru Jezero, w którym pracuje łazik Perseverance, to prawdopodobnie wulkan, donoszą naukowcy z Georgia Institute of Technology. Góra jest niemal połowy wielkości krateru Jezero, a jej zbadanie mogłoby nam wiele powiedzieć o wulkanizmie na Marsie i zdolności planety do potrzymania życia. Odkrycie dokonane przez naukowców z Georgii pokazuje, jak mało wiemy nawet o jednym z najlepiej zbadanych regionów Marsa.
      Badanie wulkanizmu Marsa to niezwykle interesujące zagadnienie. Możemy dzięki niemu poznać geologię i historię Czerwonej Planety. Krater Jezero to jedno z najlepiej zbadanych miejsc na Marsie. A jeśli dopiero teraz znaleźliśmy tam wulkan, to wyobraźmy sobie, jak dużo może ich być na Marsie. Być może jest ich więcej, niż kiedykolwiek sobie wyobrażaliśmy, mówi profesor James J. Wray.
      Wray zauważył górę w 2007 roku, gdy był świeżo upieczonym magistrem. Oglądałem zdjęcia tego regionu wykonane w niskiej rozdzielczości i zauważyłem górę na krawędziach krateru. Dla mnie wyglądała jak wulkan, ale trudno było zdobyć dodatkowe zdjęcia, mówi. Było to niedługo po odkryciu Jezero Crater i był on badany pod kątem obecności w przeszłości wody, wykonywano więc głównie fotografie innego obszaru, znajdującego się kilkadziesiąt kilometrów dalej.
      Później krater został wybrany celem misji Mars 2020 i wylądował w nim łazik Perseverance, poszukujący śladów dawnego życia na Marsie. Okazało się jednak, że jednymi z pierwszych próbek przeanalizowanych przez łazik, był nie materiał osadowy – jakiego należałoby się spodziewać po działalności wody – a wulkaniczny. Wray podejrzewał, skąd ten materiał mógł się wziąć, jednak najpierw musiał wykazać, że zauważona przed laty góra rzeczywiście jest wulkanem. Uczony wraz z zespołem wykorzystał wcześniejsze badania profesor Briony Horgan, która również sugerowała, że Jezero Mons to wulkan, oraz użył danych z orbiterów Mars Odyssey, Mars Reconnaissance, ExoMars Trace Gas i łazika Perseverance.
      Nie możemy odwiedzić Marsa i bezsprzecznie udowodnić, że to wulkan, ale możemy wykazać, na ile góra ta ma takie same właściwości jak inne wulkany na Ziemi i Marsie, wyjaśnia Wray. Udało się tego dokonać między innymi dzięki danym zebranym już wcześniej przez wspomniane orbitery. To pokazuje, że dane ze starszych pojazdów kosmicznych mogą być niezwykle cenne nawet długo po zakończeniu ich misji. Te dawne misje wciąż mogą przyczynić się do dokonywania nowych odkryć i pomogą nad udzielić odpowiedzi na trudne pytania, dodaje uczony.
      Jeśli Jezero Mons jest wulkanem, to jego obecność zaraz przy kraterze Jezero, w którym znajdowała się niegdyś woda, może dostarczyć nam niezwykle istotnych informacji na temat źródła energii na Marsie, w tym na temat potencjalnego istnienia tam zjawisk hydrotermalnych. Perseverance zebrał próbki niezwykłych skał osadowych, które mogą pochodzić z regionu, gdzie w przeszłości mogło istnieć życie, oraz próbki skał magmowych o niezwykle dużej wartości naukowej, wyjaśnia Wray. Jeśli udałoby się te próbki przetransportować na Ziemię, skały magmowe można by niezwykle precyzyjnie datować. To zaś pozwoliłoby na skalibrowanie dat dla krateru Jezero i dałoby naukowcom niezwykły wgląd w przeszłość geologiczną Marsa.
      Źródło: Evidence for a composite volcano on the rim of Jezero crater on Mars, https://www.nature.com/articles/s43247-025-02329-7

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mars jest planetą szczególną. Od tysiącleci fascynuje ludzkość, setki lat temu pojawiły się przypuszczenia o istnieniu tam cywilizacji, a od bez mała stu lat ludzie chcą się tam wybrać. I o tym jest ta książka. O fascynacji i planach. Andrew May opisuje, co takiego jest w Marsie, że przykuwa uwagę kolejnych pokoleń, kultur i cywilizacji. Ale przede wszystkim mówi o tym, jak na Marsa się dostać. Jak można to zrobić w prosty sposób i dlaczego jest to tak trudne. Jak to się stało, że przez 60 lat od lądowania na Księżycu ludzka stopa wciąż nie stanęła na Marsie, kto się chce tam wybrać i po co.
      Osobiście jestem sceptykiem, nie widzę sensu misji załogowej na Marsa, nie mówiąc już o osadnictwie na Czerwonej Planecie. May jednak podaje rzeczowe argumenty, w prosty sposób wyjaśnia piętrzące się trudności i opisuje korzyści. Przekonać do wysłania tam ludzi mnie nie przekonał, jednak z pewnością pozwolił mi poszerzyć horyzonty i lepiej dojrzeć szanse – oraz problemy – kryjące się nie tylko za misjami marsjańskimi, ale misjami poza orbitą Księżyca.
      Załogowa wyprawa na Marsa będzie największą przygodą ludzkości od czasu wielkich odkryć geograficznych. Czy zmieni ona historię tak bardzo, jak wyprawy XV- i XVI-wiecznych żeglarzy? Wątpię. A czy jest sens w przygodę tę się angażować?
      Przeczytajcie sami i sami wyróbcie sobie opinię. "Mars: Nowa Ziemia. Historia eksploracji i plany podboju Czerwonej Planety” Andrew Maya to kolejny wydawniczy strzał w dziesiątkę Helionu. Mamy zaszczyt być patronem medialnym tej książki. I z tej okazji już jutro rozpoczniemy konkurs, w którym będziecie mogli wygrać jeden z jej 2 egzemplarzy.
    • przez KopalniaWiedzy.pl
      W przeszłości Mars posiadał silne pole magnetyczne. Obecnie pozostały po nim ślady w marsjańskich skałach. Są to jednak ślady nietypowe. Sonda Mars Global Surveyor już w 1999 roku zauważyła, że skały na południowej półkuli Marsa noszą ślady silnego oddziaływania pola magnetycznego. Na półkuli północnej tak silnych sygnałów nie zauważono. Zjawisko to od dawna zastanawiało naukowców. Teraz uczeni z Instytutu Geofizyki University of Texas zaproponowali rozwiązanie zagadki.
      Ostatnie pomiary wykonane przez misję InSight pokazują, że jądro Marsa jest mniej gęste niż sądzono. To wskazuje, że Mars prawdopodobnie nigdy nie miał stałego jądra, czytamy na łamach Geophysical Research Letters. Zespół Chi Yana opisał wyniki swoich symulacji komputerowych, z których wynika, że całkowicie płynne jądro, bez części z ciała stałego, dobrze wyjaśnia widoczną różnicę w zapisie oddziaływania pola magnetycznego na różnych półkulach. Jeśli nie ma sztywnego wewnętrznego jądra, ze znacznie większą łatwością powstaje pole magnetyczne obejmujące tylko jedną półkulę. To zaś mogło mieć wpływ zarówno na działanie pola magnetycznego Marsa oraz jego możliwość utrzymania atmosfery, wyjaśnia Yan.
      Dotychczas większość badaczy zakładała, że jądro Marsa jest podobne do ziemskiego i składa się ze stałego jądra wewnętrznego oraz otaczającego je płynnego jądra zewnętrznego. Badania misji InSight pokazały, że jądro Marsa składa się z lżejszych pierwiastków niż się spodziewano. To zaś oznacza, że jego temperatura topnienia jest inna niż temperatura topnienia jądra Ziemi i prawdopodobnie jest ono całkowicie płynne. Jeśli zaś jądro Czerwonej Planety jest płynne obecnie, to niemal na pewno było płynne 4 miliardy lat temu, gdy Mars posiadał silne pole magnetyczne, wyjaśnia profesor Sabine Stanley z Uniwersytetu Johnsa Hopkinsa.
      Uczeni postanowili przetestować tę hipotezę i stworzyli model, który symulował całkowicie płynne jądro Marsa. Uruchomili go kilkanaście razy, za każdym tak ustawiając parametry symulacji, by płaszcz planety na półkuli północnej był nieco cieplejszy niż na półkuli południowej. Okazało się, że przy pewnej różnicy temperatur ciepło uciekające z jądra było uwalniane tylko przez chłodniejszą półkulę południową, co powodowało pojawienie się na niej silnego pola magnetycznego. Nie wiemy, czy to wyjaśnia historię pola magnetycznego Marsa, ale niezwykle ekscytujące jest samo stwierdzenie, że na planecie może istnieć pole magnetyczne obejmujące tylko jej część, a struktura symulowanego jądra pasuje do badań przeprowadzonych przez InSight, mówi Stanley.
      Zdaniem naukowców, ich badania to przekonująca alternatywa dla hipotezy mówiącej, że ślady działania pola magnetycznego na półkuli północnej zostały zniszczone przez uderzenia asteroid.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Administracja Donalda Trumpa chce obniżyć przyszłoroczny budżet NASA aż o 20%. Obecny budżet Agencji to rekordowe 25 miliardów USD. Biały Dom proponuje, by w przyszłym roku podatkowym, który rozpoczyna się 1 października 2025, było to 20 miliardów dolarów. Większość cięć ma dotyczyć Dyrektoriatu Misji Naukowych (SMD), którego praca skupia się na czterech szeroko pojętych dziedzinach: nauk o Ziemi, nauk o planetach, naukach o Słońcu oraz astrofizyce. SMD, którego tegoroczny budżet to 7,5 miliarda USD, miałby w przyszłym roku otrzymać 3,9 USD.
      Zgodnie z propozycją Białego Domu budżet na astrofizykę miałby zostać zmniejszony z 1,5 miliarda do 487 milionów, czyli o 68%. Podobnie duża redukcja miałaby dotknąć wydziału odpowiedzialnego za badanie Słońca. Kwota na nauki o Ziemi ma zostać zmniejszona o ponad 50%, do 1,033 miliarda, a cięcia na nauki o planetach mają wynieść 30%, budżet tego wydziału miałby zamknąć się kwotą 1,929 miliarda dolarów.
      Biały Dom chce utrzymać istniejące misje, takie jak Teleskop Kosmiczny Hubble'a czy Teleskop Kosmiczny Jamesa Webba, ale nie chce przeznaczyć ani dolara na wyczekiwany przez światową naukę Nancy Grace Roman Space Telescope, który miałby uzupełnić oba urządzenia. To w pełni złożony teleskop kosmiczny, którego historia rozpoczęła się od niezwykłego prezentu od wywiadu, a który ma zostać wystrzelony w 2027 roku. Zresztą w przesłanych NASA dokumentach jest wprost mowa o tym, że nie będzie finansowania żadnych innych teleskopów.
      Inne znaczące cięcia, proponowane przez Trumpa i jego ludzi to zakończenie finansowania misji Mars Sample Return – w ramach której na Ziemię mają trafić próbki pobrane na Marsie przez łazik Perseverance – oraz rezygnacja z misji DAVINCI na Wenus. Prawdopodobnie administracja Trumpa chciałaby zamknąć Goddard Space Flight Center.
      Już w ubiegłym miesiącu amerykańskie media informowały, że Biały Dom chce o połowę zmniejszyć finansowanie programów naukowych prowadzonych przez NASA. Jeszcze niedawno p.o. administratora NASA Janet Petro komentowała, że to plotki pochodzące z niewiarygodnych źródeł. Teraz do NASA Biały Dom wysłał dokumenty w sprawie tych cięć.
      Po otrzymaniu takich dokumentów NASA ma zwykle 72 godziny, by się z nimi zapoznać i zgłosić swoje uwagi. Następnie propozycja Białego Domu, z ewentualnymi modyfikacjami związanymi z uwagami NASA, trafia do oficjalnej prezydenckiej propozycji budżetowej na przyszły rok. Dokument ten jest jawny. Powinien zostać opublikowany w ciągu 4–6 tygodni.
      Budżet państwa proponowany przez Biały Dom jest punktem wyjścia do prac budżetowych w Kongresie. Każda z izb ma własny komitet budżetowy. Kongres nie jest zobowiązany do przyjęcia żadnej z propozycji Białego Domu. Jednak, jako że prezydent musi ostatecznie podpisać każdą ustawę proponowaną przez Kongres, nie zdarza się, by propozycje budżetowe Białego Domu zostały całkowicie zignorowane.
      Już teraz można przewidzieć, że przynajmniej część cięć dotyczących NASA spotka się z mocnym sprzeciwem w Kongresie. Problem jednak w tym, że jeśli w Kongresie prace nad budżetem będą się przeciągały – a często tak się dzieje – to po 1 października Biały Dom mógłby wymusić na agencjach federalnych wydatkowanie pieniędzy według własnej propozycji budżetowej. Jednak na takie działanie musi zgodzić się Kongres.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...