Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Naukowcy korzystający z europejskiego Very Large Telescope odkryli niezwykłą gwiazdę, której istnienie może wymusić zmianę obecnie obowiązujących teorii nt. powstawania gwiazd. SDS J102915+172927 nie powinna istnieć, gdyż nie posiada cięższych pierwiastków, które według współczesnych teorii są konieczne do uformowania gwiazd o niskiej masie.

Skład chemiczny SDS J102915+172927 wskazuje, że liczy sobie ona około 13 miliardów lat i uformowała się krótko po eksplozji gwiazdy pierwszej generacji. Jest zatem jedną z najstarszych znanych nam gwiazd.

Po Wielkim Wybuchu we wszechświecie znajdowały się wodór, hel oraz śladowe ilości litu. Inne pierwiastki powstały we wnętrzach gwiazd.

Gwiazdy formują się, gdy dochodzi do schłodzenia gazu. W pierwszej generacji gwiazd chłodziwem był wodór, który jednak pozwala na spadek temperatury tylko do pewnego stopnia. To umożliwia formowanie olbrzymich gwiazd pierwotnych. W ich wnętrzach tworzyły się inne pierwiastki i gdy gwiazda wybuchała, wzbogacała ona przestrzeń kosmiczną o kolejne elementy.

Współczesne teorie mówią, że gwiazda o małej masie, taka jak SDS J102915+172927, która jest nieco lżejsza od Słońca, nie może się uformować bez obecności określonej ilości innych pierwiastków, przede wszystkim tlenu i węgla, które schłodzą gaz. Problem jednak w tym, że nowo odkryta gwiazda zawiera bardzo mało pierwiastków cięższych od helu i wodoru czyli, jak nazywają te pierwiastki astronomowie, metali. 

Gwiazda o niskiej masie tak uboga w metale jak SDS J102915+172927, bez obecności węgla i tlenu, nie powinna istnieć - mówi Elisabetta Caffau, z Zentrum fur Astronomie. Śladowe ilości metali sugerują, że jest to bardzo stara gwiazda, jednak wielką niewiadomą jest niska zawartość litu. W prymitywnych gwiazdach jest go około pięćdziesięciokrotnie więcej. Naukowcy zastanawiają się, w jaki sposób lit w gwieździe został zniszczony.

Caffau mówi, że jej zespół zidentyfikował kilka innych gwiazd, które mogą być równie ubogie lub nawet uboższe w metale.

Share this post


Link to post
Share on other sites

nie ściemą tylko pomyłką, błędem... albo czymkolwiek w tym rodzaju

 

ściema jest wtedy, gdy ktoś kto ją głosi uważa, że jest nieprawdziwa, a tu każdy wierzy w to co mówi... najwyżej się myli...

Share this post


Link to post
Share on other sites

Ja tam tym "fantastom" (naukowiec spopularyzowany) nie wierzę... Taki Michio Kaku. Ten to ma fajne teorie.

Share this post


Link to post
Share on other sites

A ja sądzę że naukowcy zajmujący się astronomią w szerokim tego słowa znaczeniu, nigdy nie zająkną się nawet o możliwym eksploatowaniu gwiazd przez cywilizacje. A w tak wielkim odcinku czasu jest to najzupełniej możliwe.

Share this post


Link to post
Share on other sites

A ja sądzę... A w tak wielkim odcinku czasu jest to najzupełniej możliwe.

Coś podobnego i ja pomyślałem:) Zakladajac, ze niewiele sie pomylili szacujac wiek gwiazdy na okolo 13mld lat, to bylo dosc czasu na dojscie do technologii, wyeksploatowanie gwiazdy, dostatnie zycie a nastepnie nawet znudzenie sie cala sytuacja przez powiedzmy kolejny miliard:D W koncu  dojrzeli do mysli o samoeutanazji dla oczyszczenia swiata ze swojej obecnosci:D no i dlatego wciaz nie spotkalismy zadnej innej inteligencji w kosmosie:D hehehhe.....

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wieloletnie obserwacje prowadzone za pomocą Very Large Telescope (VLT) potwierdzają, że gwiazda krążąca wokół supermasywnej czarnej dziury ulega precesji Schwarzschilda, zatem jej orbita jest zgodna z przewidywaniami ogólnej teorii względności Einsteina, a nie grawitacji Newtona. Jej kolejne orbity rysują rozetę.
      Ogólna teoria względności przewiduje, że związana orbita jednego obiektu krążącego wokół innego nie będzie zamknięta, jak wynikałoby z grawitacji newtonowskiej, ale będzie ulegała precesji w kierunku płaszczyzny ruchu. To słynne zjawisko, które po raz pierwszy zaobserwowano w przypadku orbity Merkurego wokół Słońca, było pierwszym dowodem na prawdziwość ogólnej teorii względności. Sto lat później obserwujemy ten sam efekt w ruchu gwiazdy wokół kompaktowego źródła sygnału radiowego Sagittarius A* w centrum Drogi Mlecznej. Te przełomowe badania potwierdzają, że Sagittarius A* musi być supermasywną czarną dziurą o masie 4 milionów mas Słońca, powiedział Reinhard Genzel, dyrektor Instytutu Fizyki Pozaziemskiej im Maxa Plancka i jeden z głównych autorów badań.
      Od 1992 roku międzynarodowy zespół naukowy prowadzony przez Franka Eisenhauera obserwuje gwiazdę S2 krążącą wokół czarnej dziury znajdującej się w centrum naszej galaktyki. W pobliżu Sagittarius A* znajduje się gęsta gromada gwiazd. Wyróżnia się w niej S2, która krąży wokół dziury, zbliżając się do nej na odległość około 120 jednostek astronomicznych. To jedna z gwiazd najbliższych tej czarnej dziurze. W miejscu, gdzie S2 podlatuje najbliżej Sagittarius A* prędkość gwiazdy wynosi niemal 3% prędkości światła (ok. 9000 km/s). Gwiazda okrąża dziurę w ciągu 16 lat.
      Orbity większości planet i gwiazd nie są kołowe, zatem raz są bliżej, a raz dalej od obiektu, wokół którego krążą. Orbita S2 ulega precesji, co oznacza, że z każdym okrążeniem zmienia się punkt, w którym gwiazda jest najbliżej czarnej dziury. W ten sposób gwiazda kreśli wokół niej kształt rozety. Ogólna teoria względności bardzo precyzyjnie przewiduje takie zmiany orbity, a przeprowadzone właśnie obserwacje dokładnie zgadzają się z teorią, dowodząc jej prawdziwości.
      To pierwszy przypadek zmierzenia precesji Schwarszschilda w przypadku gwiazdy krążącej wokół supermasywnej czarnej dziury. To bardzo ważne obserwacje, gdyż, jak mówią Guy Perrin i Karine Perrault z Francji, pasują do ogólnej teorii względności tak dobrze, że możemy ustalić ścisłe granice dotyczące ilości niewidocznego materiału, jak rozproszona ciemna materia czy mniejsze czarne dziury, znajduje się wokół Sagittarius A*.
      Ze szczegółami badań można zapoznać się na łamach Astronomy & Physics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowców odkrył, że atomy wodoru w wodorkach metalu są dużo gęściej upakowane niż uważano do tej pory. Właściwość ta może prowadzić do pojawienia się nadprzewodnictwa w temperaturach i ciśnieniach zbliżonych do panujących w warunkach pokojowych. Tego rodzaju materiał nadprzewodzący, służący do przesyłania energii elektrycznej bez strat wywołanych rezystancją, mógłby zrewolucjonizować efektywność energetyczną w szerokim zakresie zastosowań.
      W należącym do Departamentu Energii Stanów Zjednoczonych Narodowym Laboratorium Oak Ridge (ORNL) naukowcy przeprowadzili eksperymenty rozpraszania neutronów na wodorku cyrkonowo-wanadowym pod ciśnieniem atmosferycznym w zakresie temperatur sięgających od –268 stopni Celsjusza (5 K) do –23 stopni Celsjusza (250 K) – czyli znacznie powyżej temperatury, w której spodziewane jest wystąpienie nadprzewodnictwa przy takim ciśnieniu. Wyniki pomiarów w żaden sposób nie zgadzały się z istniejącymi modelami. Prof. Zbigniew Łodziana z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie, jeden z członków międzynarodowego zespołu badaczy, zaproponował nowy model tego wodorku. Model ten, poddany obliczeniom na jednym z najpotężniejszych superkomputerów na świecie, pozwolił w prosty sposób wyjaśnić obserwacje eksperymentalne. Okazało się, że odległości pomiędzy atomami wodoru w badanym materiale wynoszą 1,6 angstrema, podczas gdy dotychczas ugruntowane przewidywania dla tych związków wyznaczały tę odległość na poziomie co najmniej 2,1 angstrema.
      Odkrycia międzynarodowego zespołu badaczy ze szwajcarskiego Laboratorium Badania Materiałów i Technologii EMPA, Uniwersytetu w Zurychu, Uniwersytetu Illinois w Chicago ORNL oraz Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie opublikowane zostały w prestiżowym czasopiśmie Proceedings of National Academy of Sciences.
      Uzyskana struktura atomowa posiada niezwykle obiecujące właściwości, ponieważ wodór znajdujący się w metalach wpływa na ich właściwości elektronowe. Inne materiały o podobnym upakowaniu atomów wodoru przechodzą w stan nadprzewodnictwa, ale tylko przy bardzo wysokich ciśnieniach.
      Na przykład niedawno odkryty dekawodorek lantanu osiąga stan nadprzewodnictwa w temperaturze około –13 stopni Celsjusza, tyle że pod ciśnieniem 150 tysięcy MPa, czyli prawie półtora miliona razy wyższym niż ciśnienie atmosferyczne! Tak wysokie ciśnienie potrzebne jest, by zbliżyć do siebie atomy wodoru na odległość mniejszą niż 2 angstremy. Nam udało się pokazać, że wodór można upakować w taki sposób również pod ciśnieniem atmosferycznym. Co ciekawe – od ponad 40 lat panowało przekonanie, iż nie jest to możliwe, stąd badano materiały pod wysokimi ciśnieniami. Znalezienie substancji, która jest nadprzewodnikiem w temperaturze pokojowej i pod ciśnieniem atmosferycznym, najprawdopodobniej pozwoli inżynierom wykorzystać go do projektowania powszechnie stosowanych systemów i urządzeń elektrycznych, jak na przykład tomografów rezonansu magnetycznego. Mamy nadzieję, że tani i stabilny stop w rodzaju wodorku cyrkonowo-wanadowego można będzie łatwo zmodyfikować w taki sposób, aby uzyskać nadprzewodzący materiał – wyjaśnia prof. Zbigniew Łodziana z IFJ PAN.
      Badacze przeanalizowali oddziaływania atomów wodoru w dobrze poznanym wodorku metalu za pomocą wysokiej rozdzielczości wibracyjnej spektroskopii nieelastycznego rozpraszania neutronów wiązki VISION, pochodzącej ze spalacyjnego źródła neutronów laboratorium Oak Ridge w Stanach Zjednoczonych. Uzyskany sygnał widmowy, w tym znaczący wzrost intensywności przy energii około 50 milielektronowoltów, nie zgadzał się z przewidywaniami poczynionymi w ramach istniejących modeli teoretycznych.
      Przełom w zrozumieniu obserwacji nastąpił po wykonaniu obliczeń w Oak Ridge. Zaproponowany przez prof. Łodzianę model posłużył opracowaniu strategii analizy danych. Obliczenia wykonano na superkomputerze Titan, jednym z najszybszych tego typu urządzeń na świecie. Komputer ten zbudowany jest w oparciu o platformę Cray XK7 i działa z prędkością dochodzącą do 27 petaflopów (czyli 27 biliardów operacji zmiennoprzecinkowych na sekundę). Wykonanie takich obliczeń na komputerze domowym trwałoby około dwudziestu lat, a na najszybszym polskim superkomputerze Prometheus w ACK Cyfronet jakieś 3–5 miesięcy. Na maszynie Titan wyniki obliczeń otrzymaliśmy w niespełna tydzień – mówi prof. Łodziana.
      Przeprowadzone symulacje komputerowe, wraz z dodatkowymi eksperymentami wykluczającymi alternatywne wyjaśnienia, wykazały jednoznacznie, że nieoczekiwana sygnatura widmowa występuje tylko wtedy, gdy odległości między atomami wodoru są mniejsze niż 2 angstremy. Takiego zjawiska nigdy wcześniej nie zaobserwowano w wodorkach metalu dla ciśnień i temperatur charakterystycznych dla warunków pokojowych. Odkrycia zespołu stanowią więc pierwszy znany wyjątek od kryterium Switendicka w stopie bimetalicznym – czyli zasady obowiązującej dla stabilnych wodorków w warunkach standardowych, która mówi o tym, że odstęp między atomami wodoru nie może być mniejszy niż 2,1 angstrema.
      W kolejnych doświadczeniach naukowcy planują wzbogacić wodorek cyrkonowo-wanadowy większą ilością wodoru pod różnymi ciśnieniami, aby ocenić potencjalne nadprzewodnictwo badanego materiału.
      Czy zatem znajdujemy się u progu technologicznej rewolucji polegającej na znalezieniu materiału wykazującego właściwości nadprzewodzące w temperaturze pokojowej? Tego nie wiem, ale z pewnością udało nam się poczynić istotny krok w tym kierunku – przekonuje prof. Łodziana.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chiński astronom odkrył najszybciej obracającą się gwiazdę w Drodze Mlecznej. Li Guangwei wykorzystał Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) znajdujący się w Xinglong w prowincji Hebei. Za pomocą tego urządzenia odkrył, że szybkość ruchu obrotowego gwiazdy LAMOST J040643.69+542347.8 wynosi około 540 km/s. To o około 100 km/s szybciej niż dotychczasowy rekordzistka HD 191423. Dla porównania, prędkość obrotowa gwiazd podobnych do Słońca wynosi na równiku mniej niż 25 km/s.
      Analizując spektrum gwiazdy uczony doszedł do wniosku, że to masywny obiekt o wysokiej temperaturze. Gwiazda ma obły kształt, gdyż duża prędkość obrotowa mocno zniekształca ją na równiku. Powoduje to, że jej średnica na równiku jest większa, niż średnica mierzona do biegunów. Przez to grawitacja na biegunach jest wyższa niż na równiku. Wyższa jest tam też temperatura gwiazdy.
      LAMOST J040643.69+542347.8 znajduje się w odległości około 30 000 lat świetlnych od Ziemi i ucieka z prędkością około 120 km/s od miejsca swoich narodzin, co sugeruje, że była częścią układu podwójnego. Najprawdopodobniej przechwytywała materiał od swojego towarzysza, co napędziło jej ruch obrotowy, a gdy jej towarzysz zakończył życie w postaci supernowej, badana gwiazda została gwałtownie wyrzucona siłą eksplozji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niedaleko Ziemi, w odległości zaledwie 1500 lat świetlnych, zaobserwowano gwiazdę pulsującą tylko z jednej strony. Istnienie takiej gwiazdy, przypominającej kształtem cytrynę, przewidziano teoretycznie już kilkadziesiąt lat temu. Dopiero teraz jednak udało się ją zaobserwować.
      Po raz pierwszy o niezwykłym zachowaniu gwiazdy poinformowali amatorzy analizujący dane pochodzące z teleskopu TESS. Zauważyli w nich anomalie, a że nie wiedzieli, co oznaczają, poinformowali astronomów. Informacje dotarły profesora Geralda Handlera z Centrum Astronomicznego im. Mikołaja Kopernika (CAMK) oraz Dona Kurtza z University of Central Lancashire.
      Od lat 80. wiemy, że takie gwiazdy powinny istnieć. Szukam ich od niemal 40 lat i w końcu jedną znaleźliśmy – mówi Kurtz.
      Na łamach najnowszego numeru Nature Astronomy naukowcy informują, że udało im się zidentyfikować przyczynę niezwykłego zachowania gwiazdy. Okazuje się, że znajduje się ona w układzie podwójnym i grawitacja jej bliskiego towarzysza zniekształca oscylacje. Okres orbitalny układu podwójnego wynosi poniżej dwóch dni.
      Znakomite dane z satelity TESS pozwoliły nam obserwować zmiany jasności wynikające zarówno z odkształcenia grawitacyjnego gwiazdy, jak i pulsacji, mówi profesor Handler. Naukowców zaskoczył jednak fakt, że amplituda pulsacji była silnie uzależniona od kąta obserwacji i orientacji gwiazdy w układzie podwójnym. Gdy gwiazdy podwójne krążą wokół siebie, widzimy różne części gwiazdy pulsującej. Czasami widzimy jej powierzchnię skierowaną w stronę towarzysza, a czasami tę zewnętrzną – wyjaśnia współautorka badań, doktorantka CAMK paulina Sawicka.
      Gwiazda HD74423 to obiekt typu gwiazdowego A o masie około 70% większej od masy Słońca. Jest też młodsza, chociaż trudno określić jej wiek. Szczegółowe badania ujawniły kolejne zadziwiające cechy HD74423. Zwykle takie gwiazdy są bogate w metale. Jednak tutaj metali mamy mało, co jest cechą charakterystyczną bardzo starych gwiazd. W tym przypadku mamy jednak do czynienia z czymś innym. Otóż HD74423 to gwiazda typu Lambda Boötis, które mają niezwykle mało metalu w warstwach powierzchniowych. Prawdopodobnie tracą to na rzecz otaczającego je dysku materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeszcze przed końcem obecnego wieku na niebie rozbłyśnie nowa gwiazda. Pojawi się ona w Gwiazdozbiorze Strzały. Tam właśnie, w odległości 7800 lat świetlnych od Ziemi, odbywa się ostatni taniec układu podwójnego gwiazd, zwanego Sagittae V. Gwiazdy są coraz bliżej i coraz szybciej krążą wokół siebie, a materiał większej z nich opada na towarzyszącego jej białego karła.
      Już za kilkadziesiąt lat obie gwiazdy wpadną na siebie, dojdzie do ich połączenia i potężnej emisji światła, dzięki czemu przez około miesiąc będą to najjaśniejsze gwiazdy na nocnym niebie.
      Astronomowie, którzy przeanalizowali liczące sobie ponad 100 lat archiwa obserwacji Saggitae V stwierdzili, że ich czas obiegu wokół siebie jest coraz krótszy. Obecnie wynosi on zaledwie 12 godzin. Do roku 2083 (± 16 lat), gwiazdy w pełni się połączą.
      Sagittae V to tzw. układ kataklizmiczny. Biały karzeł i inna gwiazda krążą w nim wokół siebie, a biały karzeł wysysa wodór z zewnętrznych warstw swojego towarzysza. W miarę, jak materiał ten opada na karła, dochodzi – pod wpływem grawitacji – do zapłonu wodoru, przez co cały układ staje się jaśniejszy. Sagittae V to jeden z najbardziej ekstremalnych przykładów zmiennych kataklizmicznych, mówi Bradley Schaefer z Louisiana State University.
      W większości tego typu układów gwiazda towarzysząca białemu karłowi ma albo taką samą, albo mniejszą masę. Tymczasem w przypadku Sagittae V towarzysz jest aż 4-krotnie bardziej masywny od karła. To powoduje, że Sagittae V jest mniej więcej 100-krotnie jaśniejszy niż podobne mu układy.
      Schaefer i jego zespół wyliczyli, że do połączenia obu gwiazd i pojawienia się na nieboskłonie nowego niezwykle jasnego obiektu powinno dojść około roku 2083, ale niepewność stosowanej metody powoduje, że może to się wydarzyć w latach 2067–2099.

      « powrót do artykułu
×
×
  • Create New...