Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Tevatron odkrył nową cząstkę

Rekomendowane odpowiedzi

Naukowcy z Fermilab odkryli nową cząstkę. Jest nią obojętna Ξb0 (Xi-sub-b), ciężki „krewny" neutronu. Składa się ona z trzech kwarków: dziwnego (strange), górnego (up) i spodniego (bottom). Od nich pochodzi „sub" w nazwie.

Istnienie Xi-sub-b zostało przewidziane w Modelu Standardowym.  Ξb0 należy do barionów, cząstek stworzonych z trzech kwarków. Najbardziej znanymi barionami są proton i neutron. Xi-sub-b to barion spodni. Tego typu bariony są około 6-krotnie cięższe od protonu i neutronu, gdyż zawierają ciężki kwark spodni.

Xi-sub-b powstają tylko podczas wysokoenergetycznych kolizji. Trudno je zaobserwować, gdyż żyją przez niezwykle krótki czas. Przed rozpadem zdążą przemieścić się tylko ułamki milimetra. Wychwycenie Xi-sub-b wymagało przeprowadzenia w akceleratorze Tevatron niemal 500 biliardów zderzeń protonów i antyprotonów. Dzięki temu zanotowano 25 sygnałów, mogących świadczyć o odkryciu wspomnianej cząstki. Sygnały oceniono na 7 sigma. Poziom 5 sigma pozwala już mówić o odkryciu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ta gałąź nauki to dla mnie czysta fantastyka :) Gdzie te czasy kiedy 1 człowiek mógł posiąć całą wiedzę ;p

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ta gałąź nauki to dla mnie czysta fantastyka :) Gdzie te czasy kiedy 1 człowiek mógł posiąć całą wiedzę ;p

Pewnie już niedługo doczekamy takiej sytuacji, ze maszyna obdarzona superinteligencją i mająca do dyspozycji całą wiedzę zgromadzoną przez ludzkość, zastąpi wszystkie rządy i zarządy, bo żaden z ludzi nie będzie potrafił podjąć lepszej decyzji niż ta maszyna właśnie. Pewnie nawet zajmie się stawianiem hipotez naukowych oraz ich weryfikacją. Może to jeszcze fantastyka, ale kto wie..

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
ewnie już niedługo doczekamy takiej sytuacji, ze maszyna obdarzona superinteligencją i mająca do dyspozycji całą wiedzę zgromadzoną przez ludzkość, zastąpi wszystkie rządy i zarządy, bo żaden z ludzi nie będzie potrafił podjąć lepszej decyzji niż ta maszyna właśnie. Pewnie nawet zajmie się stawianiem hipotez naukowych oraz ich weryfikacją.  

Maszyny wybierają spośród możliwości , a te ciągle zapodają ludzkie umysły (inaczej - nic co ludzkie jest im niedostępne ) to co jest niebezpieczne to wykorzystanie przez inwersję zaprogramowanych celów (inaczej - wykorzystanie ludzkiej wiedzy przeciwko im samym).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W Fermi National Accelerator Laboratory (Fermi Lab), jednej z najbardziej zasłużonych instytucji dla rozwoju fizyki cząstek, trwa właśnie budowa ostatniego z wielkich detektorów, który ma badać neutrino i szukać dowodów na istnienie fizyki poza Modelem Standardowym. Zespół detektorów powstaje w ramach Short-Baselina Neutrino Program.
      Projekt składa się ze źródła neutrin i trzech detektorów ustawionych w linii prostej. Short-Baseline Near Detector (SBND), którego budowa właśnie się rozpoczęła, znajdzie się 110 metrów za obszarem, w którym strumień protonów będzie uderzał w cel, generując strumień neutrin mionowych. W odległości 360 metrów za SBND znajduje się MicroBooNE. Urządzenie to rozpoczęło pracę już w 2015 roku. Za MicroBooNE, w odległości 130 metrów, stoi zaś ICARUS, który rozpocznie pracę jeszcze tej jesieni.
      Podróżujące przez przestrzeń neutrino podlega oscylacjom, zmienia się pomiędzy trzema różnymi rodzajami: neutrinem mionowym, taonowym i elektronowym. I właśnie te oscylacje mają badać SBND, MicroBooNE i ICARUS. Jeśli okazałoby się, że istnieje czwarty rodzaj neutrin lub też badane neutrina zachowywałyby się w inny sposób, niż obecnie się przewiduje, detektory powinny to wykryć i być może fizyka wyjdzie poza Model Standardowy.
      Czujniki detektora SBND będą zawieszone w zbiorniku z płynnym argonem. Gdy neutrino trafi do zbiornika i zderzy się z atomem argonu, powstaną liczne cząstki oraz światło. Zostaną one zarejestrowane przez czujniki, a analizy sygnałów pozwolą fizykom na precyzyjne odtworzenie trajektorii wszystkich cząstek powstałych w wyniku kolizji. Zobaczymy obraz, który pokaże nam olbrzymią liczbę szczegółów w bardzo małej kali. W porównaniu z wcześniejszymi eksperymentami otworzy nam się naprawdę nowe spektrum możliwości, mówi Anne Schukraft, koordynatorka techniczna projektu.
      Wewnątrz SBND znajdą się trzy wielkie elektrody. Dwie anody i katoda. Każda z nich będzie mierzyła 5x4 metry. Natężenie pola elektrycznego pomiędzy katodą a każdą z anod wyniesie 500 V/cm. Anody zostaną umieszczone na przeciwnych ścianach pomieszczenia w kształcie sześcianu. Będą one przechwytywały elektrony, a znajdujące się za nimi czujniki będą rejestrowały fotony. W środku detektora umieszczona zostanie folia spełniająca rolę katody. Zamontowano ją pod koniec lipca, a w najbliższych dniach ma zostać ukończony montaż pierwszej anody.
      Całość, gdy zostanie ukończona, będzie ważył ponad 100 ton i zostanie wypełniona argonem o temperaturze -190 stopni Celsjusza. Komora będzie znajdowała się w stalowym kriostacie o izolowanych ścianach, którego zadaniem będzie utrzymanie niskiej temperatury wewnątrz. Skomplikowany system rur będzie ciągle filtrował argon, by utrzymać go w czystości.
      SBND to przedsięwzięcie międzynarodowe. Poszczególne elementy systemy powstają w wielu krajach, przede wszystkim w USA, Wielkiej Brytanii, Brazylii i Szwajcarii. Schukraft przewiduje, że nowy detektor ruszy na początku 2023 roku.
      Gdy prace nad SBND się zakończą, detektor będzie pracował razem z MicroBooNE i ICARUSEM. Naukowcy chcą przede wszystkim poszukać dowodów na istnienie neutrina sterylnego, cząstki, która nie wchodzi w interakcje z oddziaływaniami słabymi. Już wcześniej, podczas eksperymentów prowadzonych w Liquid Scintillator Neutrino Detector w Los Alamos National Lab i MiniBooNE w Fermilab odkryto sygnały, które mogą wskazywać na istnienie takiej cząstki.
      Pomysł polega na tym, by umieścić detektor naprawdę blisko źródła neutrin, w nadziei, że uda się złapać ten typ neutrina. Następnie jest kolejny detektor, a dalej jeszcze jeden. Mamy nadzieję, że zobaczymy oscylacje sterylnego neutrina, wyjaśnia Rober Acciarri, współdyrektor prac nad budową detektorów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Specjaliści z Fermilab stworzyli najpotężniejszy na świecie magnes do akceleratorów cząstek. Magnes pozwala na wygenerowanie pola magnetycznego o indukcji 14,5 tesli. Poprzedni rekord wynosił 14,1 tesli i również został ustanowiony w Fermilab.
      Obecne osiągnięcie to niezwykle ważny krok dla budowy przyszłych akceleratorów cząstek. Bez silniejszych magnesów nie powstaną bowiem przyszłe akceleratory, takie jak proponowany przez CERN 100-kilometrowy Future Circural Collider (FCC). O ile bowiem Wielki Zderzacz Hadronów wykorzystuje magnesy generujące pole 7,8 tesli, to w FCC naukowcy będą potrzebowali nawet 16 tesli.
      Naszym kolejnym celem jest przekroczenie poziomu15 tesli i zwiększenie maksymalnej siły pola naszych magnesów do 17 tesli albo i więcej. To znakomicie zwiększy wydajność magnesów i zoptymalizuje koszty, mów Alexander Zlobin, który stoi na czele grupy pracującej nad magnesami. Osiągnięcie wyznaczonych przez nas celów położy silne podwaliny pod przyszłe akceleratory cząstek, dodaje uczony.
      W akceleratorach magnesy są używane do kontrolowania wiązki cząstek poruszających się niemal z prędkością światła. Im silniejszy magnes tym łatwiej wiązkę kontrolować.
      Warto zauważyć, że Fermilab znacząco przyspieszyło postęp w dziedzinie magnesów. Prace nad przekroczeniem granicy 14 tesli trwały przez kilkanaście lat. W 2011 roku w Lawrence Berkeley National Laboratory osiągnięto 13,8 tesli. Rekord ten utrzymał się do 2019 roku, kiedy to w Fermilab osiągnięto 14,1 tesli. Wystarczył rok, by osiągnąć 14,5 tesli.
      Tworzenie coraz silniejszych magnesów to konieczność, jeśli chcemy mieć coraz doskonalsze akceleratory. Nie jest to jednak łatwe zadanie. Problem nie tylko w samej technologii, ale też w konieczności opracowywania nowych materiałów. W Wielkim Zderzaczu Hadronów pracują magnesy niobowo-tytanowe. Nie są one w stanie wytrzymać napięcia prądu elektrycznego potrzebnego do wygenerowania 15 tesli. Z odpowiednimi napięciami mogą pracować magnesy niobowo-cynowe, jednak ą one bardzo kruche i mogą rozsypać się pod wpływem działających na nie sił.
      Dlatego w Fermilab już podczas bicia poprzedniego rekordu stworzono specjalną architekturę magnesu, która go wzmacnia i pozwala przetrzymać ściskające i rozciągające go siły. Dziesiątki przewodów o okrągłym przekroju zostało skręconych w odpowiedni sposób, by uzyskane przewody spełniały specyficzne wymagania elektryczne i mechaniczne. Po utworzeniu z kabli zwojów całość była podgrzewana przez dwa tygodnie w temperaturach sięgających niemal 650 stopni Celsjusza, co nadało materiałowi właściwości nadprzewodzące. Następnie zwoje zostały zamknięte w żelaznych obejmach zamkniętych aluminiowymi klamrami, na co nałożono powłokę ochronną z nierdzewnej stali, która ma ochronić zwoje przed ich deformacją.
      I to właśnie magnesy niobowo-cynowe mają pozwolić na osiągnięcie 17 tesli. Zlobin nie wyklucza, że w przyszłości, dzięki nowym materiałom, uda się wygenerować nawet 20 tesli.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Fermilab poinformowali o wygenerowaniu najsilniejszego pola magnetycznego stworzonego na potrzeby akceleratorów cząstek. Nowy rekord wynosi 14,1 tesli, a wynik taki uzyskano w magnecie schłodzonym do 4,5 kelwinów, czyli -268,65 stopnia Celsjusza. Poprzedni rekord, 13,8 tesli, został osiągnięty przed 11 laty w Lawrence Berkeley National Laboratory.
      Zwiększenie indukcji magnetycznej to znaczące osiągnięcie w fizyce cząstek. Silniejsze magnesy mogą posłużyć do zbudowania doskonalszych akceleratorów, które zastąpią w przyszłości Wielki Zderzacz Hadronów (LHC). Magnesy są wykorzystywane w akceleratorach do kontrolowania poruszających się cząstek. Im są silniejsze, tym łatwiej kontrolować cząstki poruszające się niemal z prędkością światła.
      Przez kilkanaście lat pracowaliśmy nad przekroczeniem granicy 14 tesli, więc to ważne osiągnięcie. W pierwszym teście uzyskaliśmy 14,1 tesli na demonstracyjnym magnesie, dla którego teoretyczna granica wynosi 15 tesli. Pracujemy nad wyciśnięciem z niego jeszcze więcej, mówi Alexander Zlobin, który stoi na czele grupy badawczej.
      Przyszłość zderzaczy hadronów zależy od dostępności silnych magnesów, dlatego fizycy na całym świecie są zainteresowani pracami mającymi na celu stworzenie niobowo-cynowych magnesów o indukcji 15 tesli.
      Sercem takiego urządzenia jest nadprzewodzący stop niobu z cyną. Prąd przepuszczany przez magnes powoduje pojawienie się pola magnetycznego. Jako, że materiał schłodzony jest do bardzo niskich temperatur, prąd nie napotyka oporu, nie dochodzi do generowania energii cieplnej. Całe energia elektryczna przyczynia się do wygenerowania pola magnetycznego.
      Indukcja zależy zaś od maksymalnego napięcia prądu, jakie może znieść dany materiał. Niobowo-tytanowe magnesy Wielkiego Zderzacza Hadronów nie są w stanie pracować z napięciem, które pozwalałoby na osiągnięcie 15 tesli. Można to uzyskać magnesach niobowo-cynowych, problem jednak w tym, że są one kruche i mogą się rozsypać pod wpływem działających na nie olbrzymich sił.
      Zespół z Fermilab stworzył taką architekturę magnesu, która go wzmacnia i pozwala przetrzymać ściskające i rozciągające go siły. Dziesiątki przewodów o okrągłym przekroju zostało skręconych w odpowiedni sposób, by uzyskane przewody spełniały specyficzne wymagania elektryczne i mechaniczne. Po utworzeniu z kabli zwojów całość była podgrzewana przez dwa tygodnie w temperaturach sięgających niemal 650 stopni Celsjusza, co nadało materiałowi właściwości nadprzewodzące. Następnie zwoje zostały zamknięte w żelaznych obejmach zamkniętych aluminiowymi klamrami, na co nałożono powłokę ochronną z nierdzewnej stali, która ma ochronić zwoje przed ich deformacją.
      To olbrzymie osiągnięcie, kluczowe dla rozwoju kolejnych generacji kołowych akceleratorów cząstek, mówi Soren Prestemon, naukowiec z Berkeley Lab i dyrektor U.S. Magnet Development Program, w skład którego wchodzi zespół z Fermilab. To wyjątkowy krok milowy na drodze ku opracowaniu magnesów. Osiągnięcie zostało z entuzjazmem przyjęte przez badaczy, którzy będą w przyszłości wykorzystywali akceleratory nowej generacji.
      Naukowcy z Fermilab zapowiadają, że w ciągu najbliższych miesięcy wzmocnią swój magnes pod względem mechanicznym i jesienią poddadzą go kolejnemu testowi, w czasie którego spróbują uzyskać 15 tesli. Ma być to wstępem do stworzenia jeszcze potężniejszych magnesów. W oparciu o ten projekt i o to, czego się nauczyliśmy, mamy zamiar udoskonalić magnesy niobowo-cynowe i w przyszłości osiągnąć 17 tesli, mówi Ziobin. Naukowiec nie wyklucza, że w przyszłości, wykorzystując nowe nadprzewodniki, jego zespół dojdzie do 20 tesli.
      Maksymalna indukcja pola magnetycznego magnesów LHC wynosi 8,34 tesli, czyli jest blisko górnej granicy 10 tesli dla magnesów niobowo-tytanowych. Z kolei w ubiegłym roku CERN informował o uzyskaniu dzięki magnesowi FRESCA2 14,6 tesli. FRESCA2 jest to magnes, który służy do testowania nadprzewodników, a nie do pracy wewnątrz akceleratora cząstek.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z University of Rochester i North Carolina State University jako pierwsi w historii wykorzystali neutrino do przesłania wiadomości. Uczeni wykorzystali znajdujące się w Fermilab urządzenia NuMI (NeUtrino beam at the Main Injector) do wygenerowania 25 impulsów. Przerwy pomiędzy nimi wynosiły około 2 sekundy, a w ramach każdego impulsu wysłano 1013 neutrin.
      Impulsy zostały wysłane do wykrywacza MINERvA, znajdującego się w grocie w odległości około kilometra od NuMI. Neutrina, zanim dotarły do wykrywacza, musiały przejść przez 240 metrów skały.
      W strumieniu neutrin w postaci zer i jedynek zakodowano wyraz „neutrino“. Jego przesłanie trwało około 2,5 godziny. W tym czasie MINERvA pracował z połową mocy, gdyż planowane jego jego wyłączenie, a ponadto wykonywał swoje standardowe zadania.
      Oczywiście zarówno tempo przesyłania danych, jak i wymagany do tego sprzęt - sam wykrywacz MINRvA waży 170 ton - oznaczają, że obecnie neutrino nie można wykorzystać w praktyce. Jednak nie taki był cel eksperymentu. Naukowcy chcieli przetestować krążący od dłuższego czasu pomysł użycia neutrino w celu przekazywania informacji. Neutrino, w przeciwieństwie do wszelkich innych wykorzystywanych medium, ma bowiem tę zaletę, że praktycznie nie istnieją dlań żadne fizyczne przeszkody. Adresat wysłanej za ich pomocą informacji mógłby ją odebrać zarówno na ulicy, jak i na dnie najgłębszej kopalni.
    • przez KopalniaWiedzy.pl
      Przed czterema miesiącami zamknięto Tevatron, niezwykle zasłużony dla nauki akcelerator cząstek z amerykańskiego Fermilab. Jednak prowadzone w nim w przeszłości prace ciągle umożliwiają dokonywanie kolejnych odkryć.
      Akcelerator dostarczył olbrzymiej ilości danych, których analiza i interpretacja ciągle nie zostały zakończone.
      Podczas konferencji we Włoszech poinformowano, że dane z Tevatronu wskazują, iż podczas zderzeń protonów z antyprotonami pojawiały się liczne sygnały, których źródłem może być bozon Higgsa o masie pomiędzy 117-131 GeV. Statystyczne prawdopodobieństwo wynosi 2,6 sigma, co oznacza, że istnieje 0,5% szansy, iż sygnały są przypadkowe. Jest więc ono zbyt niskie, by jednoznacznie rozstrzygnąć o istnieniu bozonu w tym przedziale, jednak znaczenie odkrycia polega na tym, iż potwierdza ono obserwacje dokonane w Wielkim Zderzaczu Hadronów. Wynika z nich, że Boska Cząstka, o ile istnieje, może mieć masę około 125 gigaelektronowoltów.
      Dane z Tevatronu są tym cenniejsze, iż akcelerator pracował w inny sposób niż LHC i obserwował inne rodzaje rozpadu cząstek, zatem można stwierdzić, że podobne wyniki uzyskano różnymi metodami. Ponadto LHC uzyskało swoje wyniki z 5 odwrotnych femtobarnów, ale przy energii 7 teraelektronowoltów. Ilość danych z Tevatrona to 10 odwrotnych femtobarnów uzyskanych przy energii 2 TeV.
      W bieżącym roku, jak informowaliśmy, LHC będzie pracował z energią 8 TeV. To powinno pozwolić na uzyskanie danych o statystycznym prawdopodobieństwie wynoszącym 5 sigma. To wystarczy, by ogłosić odkrycie bozonu Higgsa. O ile, oczywiście, on istnieje.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...