Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wirus ulepsza ogniwa słoneczne

Recommended Posts

Badania nad zwiększeniem wydajności ogniw słonecznych ciągle trwają, a uczeni z MIT-u postanowili zaprząc do pomocy... wirusy. W Nature Nanotechnology opublikowali artykuł, w którym opisują w jaki sposób wirusy mogą pomóc w tworzeniu ogniw słonecznych z nanorurek.

Od pewnego czasu wiadomo, że nanorurki mogą zwiększyć efektywność zbierania elektronów przez ogniwa. Jednak użycie nanorurek napotyka na dwa poważne problemy. Pierwszy z nich to fakt, że podczas produkcji nanorurek uzyskiwana jest mieszanina dwóch typów. Jedne nanorurki zachowują się jak półprzewodniki, drugie jak metale. Nowe badania wykazały, że tylko nanorurki-półprzewodniki zwiększają wydajność ogniw. Nanorurki-metale zmniejszają ją. Ponadto nanorurki mają tendencję do zlepiania się ze sobą, co zmniejsza ich efektywność.

Studenci Xiangnan Dang i Hyunjun Yi, pracujący pod kierunkiem profesor Angeli Belcher, odkryli, że genetycznie zmodyfikowany wirus M13 może zostać użyty do kontrolowania ułożenia nanorurek na powierzchni, dzięki czemu są one od siebie oddzielone nie powodując krótkich spięć oraz nie mogą zbić się w grupie.

Młodzi naukowcy przetestowali swojego wirusa na tanich ogniwach cienkowarstwowych DSSC (dye-sensitized solar cells), zwiększając ich wydajność z 8 do 10,6%, czyli aż o 33%. To kolosalny postęp, tym większy, jeśli weźmiemy pod uwagę fakt, że wirusy i nanorurki stanowią tylko 0,1% wagi ulepszonego ogniwa. Co więcej, taką samą technikę można stosować na droższych, bardziej zaawansowanych ogniwach.

Zastosowanie wirusów i nanorurek ułatwia elektronom w ogniwie dotarcie do kolektora. Wirusy mają dwa zadania. Po pierwsze przyczepiają do nanorurek peptydy, które utrzymują je z dala od siebie. Każdy z wirusów może utrzymywać od 5 do 10 nanorurek, z których każda jest przytwierdzona około 300 molekułami. Ponadto wirusy są wykorzystywane w procesie pokrywania nanorurek dwutlenkiem tytanu, głównym składnikiem ogniw DSSC.

Co ciekawe, jeden wirus może spełniać obie funkcje, a przełączanie pomiędzy poszczególnymi zadaniami jest regulowane za pomocą zmian kwasowości środowiska w którym odbywa się cały proces.

Wirusy ułatwiają też rozprowadzanie nanorurek w wodzie, co pozwala na wykorzystywanie w produkcji ogniw taniej metody z użyciem roztworów wodnych przebiegającej w temperaturze pokojowej.

Profesor Prashant Kamat z Notre Dame University mówi, że już wcześniej próbowano wykorzystać nanorurki do ulepszenia ogniw słonecznych, jednak uzyskiwano minimalne zwiększenie ich wydajności. Tymczasem prace uczonych z MIT-u są „imponujące".

Prawdopodobnie zastosowanie wirusa umożliwiło lepsze połączenie nanocząstek TiO2 z nonarurkami. Ścisłe ich połączenie jest niezbędne do szybkiego i efektywnego transportu elektronów" - mówi uczony.

Przypomina, że ogniwa DSSC są już sprzedawane w Korei, Japonii i na Tajwanie, a tak znaczące zwiększenie ich wydajności z pewnością zainteresuje przemysł. Tym bardziej, że zastosowanie nowej techniki wymaga dodania do procesu produkcyjnego tylko jednego, prostego procesu, zatem linie produkcyjne będzie można przystosować doń szybko i niedrogo.

Share this post


Link to post
Share on other sites

Hmm osobiście skupił bym się na drukowaniu ogniw słonecznych niż na tradycyjnych panelach słonecznych.

http://kopalniawiedzy.pl/drukowane-baterie-sloneczne-Bio21-Institute-University-of-Melbourne-VICOSC-11497.html

Jednak  moim zdaniem są bardziej efektywne z racji tego że pochłaniają energię pod każdym kątem, w przeciwieństwie do standardowych ogniw. Ze względu na niską cenę można nimi pokryć cały dach co kolosalnie zwiększa ich skuteczność.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wirusy należą do najmniej poznanych cząstek na Ziemi. Jako, że nie są one w stanie przeżyć i mnożyć się bez gospodarza, niektórzy nie uważają ich nawet za organizmy żywe. Tymczasem brazylijscy naukowcy odkryli wirusa, którego genom składa się wyłącznie z genów nieznanych nauce.
      Odkrywca nowego wirusa, Jônatas Abrahão z Uniwersytetu Federalnego Minas Gerais, mówi, że to pokazuje, jak wiele jeszcze musimy się o wirusach nauczyć.
      Naukowiec trafił na niezwykłego wirusa gdy poszukiwał wielkich wirusów o rozmiarach bakterii. W lokalnym sztucznym zbiorniku wodnym znalazł nie tylko wielkie wirusy, ale też nowego niewielkiego wirusa, który był niepodobny do wirusów infekujących ameby. Uczeni nazwali go Yarawirusem.
      Mikroorganizm okazał się niezwykły nie tylko ze względu na swoje rozmiary. Gdy naukowcy zsekwencjonowali genom wirusa i porównali go z bazami danych dotyczącymi innych wirusów okazało się, z żaden z genów Yarawirusa nie był wcześniej znany nauce.
      Odkryciem nie jest zaskoczona Elodie Ghedin z New York University, która bada wirusy obecne w ściekach i drogach oddechowych. Uczona mówi, że 95% wirusów znajdowanych w ściekach to nowe organizmy.
      Jeszcze innego odkrycia, tym razem masowego, dokonali Christopher Buck i Michael Tisza, wirusolodzy z amerykańskiego National Cancer Institute. Poszukiwali oni w tkankach ludzkich i zwierzęcych wirusów z kolistym dsDNA. do takich wirusów należy np. wirus brodawczaka ludzkiego. Naukowców interesowały te wirusy, gdyż – przynajmniej niektóre z nich – biorą udział w powstawaniu nowotworów.
      Buck i Tisza wyizolowali fragmenty wirusów z dziesiątków próbek tkanek zwierząt oraz ludzi i poszukiwali tych z kolistym dsDNA. Zidentyfikowali w ten sposób około 2500 wirusów, z których około 600 jest nowych dla nauki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W USA na nowo rozgorzał spór dotyczący badań, w ramach których wirusy są modyfikowane tak, by były bardziej niebezpieczne dla ludzi. Tym razem spór dotyczy tego, czy należy ujawniać szczegóły obrad specjalnego federalnego komitetu, który rozważa zyski i ryzyka z takich badań i decyduje o przyznaniu funduszy. W ciągu ostatnich 2 lat komitet ten zezwolił na prowadzenie 2 kontrowersyjnych badań nad ptasią grypą.
      Przedstawiciele Departamentu Zdrowia i Usług dla Ludności (HHS) oraz Narodowych Instytutów Zdrowia (NIH) mówią, że są otwarci na propozycje, szczególnie w obliczu epidemii koronawirusa z Wuhan. Jeśli polityka zatwierdzania takich badań musi zostać poprawiona, to ją poprawmy, mówi Christian Hassel.
      To kolejna odsłona dyskusji, która zaczęła się w 2011 roku, kiedy to poinformowano, że w ramach badań finansowanych przez NIH zmodyfikowano wirus ptasiej grypy tak, by zarażał fretki. Tego typu eksperymenty pozwalają naukowcom lepiej zrozumieć działanie wirusów, ale ich krytycy mówią, że jeśli taki wirus zostanie uwolniony z laboratorium, może spowodować pandemię.
      Wówczas, w 2011 roku, rząd USA – po raz pierwszy w historii – poprosił pisma Science i Nature o ocenzurowanie artykułów dotyczących badań nad wirusem. Obawiano się, że na podstawie artykułu terroryści byliby w stanie stworzyć łatwo rozprzestrzeniającą się formę wirusa. Ostatecznie jednak specjalny panel ekspertów WHO orzekł, że artykuły powinny ukazać się w oryginalnej formie.
      Z kolei w 2014 roku pracujący z USA japoński naukowiec potwierdził, że zmodyfikował wirusa świńskiej grypy tak, że może on pokonać układ odpornościowy człowieka. W tym samym roku dowiedzieliśmy się, że w jednym z laboratoriów CDC niezgodnie z procedurami dezaktywowano wąglika, a w magazynie NIH znaleziono nieprawidłowo przechowywane niebezpieczne substancje oraz wirusa ospy. Wtedy też w Stanach Zjednoczonych wprowadzono moratorium na badania z superniebezpiecznymi patogenami. Przerwano m.in. prowadzone badania nad koronawirusami SARS i MERS. Jednak w 2017 roku moratorium zniesiono.
      Obecny spór dotyczy przejrzystości procesu zatwierdzania funduszy dla tego typu badań. Zajmuje się tym National Science Advisory Board for Biosecurity (NSABB), w skład którego wchodzą specjaliści z wielu różnych dziedzin. Pojawiły się głosy, że należy m.in. ujawnić nazwiska członków NSABB. Jednak istnieją obawy, że upublicznienie nazwisk może narazić naukowców na różnego typu nieprzyjemności, zatem eksperci nie będą chcieli tam pracować.
      Thomas Inglesby, dyrektor w Center for Health Security na Uniwersytecie Johnsa Hopkinsa argumentuje, że ujawnienie nazwisk członków NSABB pozwoli sprawdzić, czy nie zachodzi tam konflikt interesów oraz czy mają oni odpowiednie kwalifikacje, by podejmować tak istotne decyzje. Ponadto, jak stwierdza Inglesby, proces powinien być publiczny, a przed przyznaniem środków na badania nad szczególnie niebezpiecznymi wirusami opinia publiczna powinna mieć prawo wypowiedzieć się, co o tym sądzi.
      Eksperci dodają, że tak potencjalnie ryzykowne badania powinny podlegać innym zasadom przyznawania funduszy niż standardowe. Na przykład cały proces powinien być bardziej jawny. Jeśli chcesz prowadzić takie badania, musisz coś poświęcić. A to dlatego, że jeśli taki patogen wydostanie się z laboratorium, to może on zaszkodzić ludziom znajdującym się tysiące kilometrów dalej, mówi epidemiolog Marc Lipsitch z Uniwersytetu Harvarda.
      Jednak, jak zauważają inni eksperci, taka zmiana dodatkowo wydłuży termin rozpoczęcia badań. Jeśli np. naukowcy chcieliby, w ramach poszukiwań szczepionki przeciwko koronawirusowi z Wuhan, zainfekować nim myszy, by wykorzystać je jako modele do poszukiwań szczepionki, musieliby dodatkowo czekać na zakończenie okresu publicznej dyskusji nad przyznaniem funduszy, co opóźniłoby badania.
      Przedstawiciele NIH zwrócili się do NSABB, by do wiosny bieżącego roku opracowano propozycję zmian na rzecz większej transparentności.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po dostaniu się do płynów ustrojowych gospodarza wirusy zostają powleczone białkami. Stają się przez to bardziej zakaźne. Takie wirusy mogą również przyspieszać tworzenie włókien amyloidowych, które odgrywają ważną rolę w chorobie Alzheimera (ChA).
      Wyobraźmy sobie piłkę tenisową, która wpada do miski mleka z płatkami. Natychmiast powlekają ją lepkie cząstki, które pozostają nawet po wyjęciu piłki z naczynia. To samo dzieje się, gdy wirus wchodzi w kontakt z bogatą w białka krwią lub płynem układu oddechowego. Wiele z tych białek błyskawicznie przywiera do powierzchni wirusa, tworząc tzw. koronę białkową - wyjaśnia Kariem Ezzat z Uniwersytetu Sztokholmskiego i Karolinska Institutet.
      Zespół Ezzata badał koronę białkową wirusa RSV (ang. Respiratory Syncytial Virus) w różnych płynach ustrojowych. Sygnatura korony białkowej RSV we krwi jest bardzo różna od korony tworzącej się w płynach układu oddechowego. Różni się też u poszczególnych osób [...].
      Na poziomie genetycznym wirus pozostaje taki sam. Tożsamości nabywa, akumulując różne korony białkowe w różnych środowiskach. [...] Wykazaliśmy, że sporo tych koron sprawia, że RSV jest bardziej zakaźny.
      Szwedzi wykazali także, że RSV i wirus opryszczki pospolitej HHV-1 wiążą się z białkami amyloidowymi. Ezzat i inni zademonstrowali, że HSV-1 może przyspieszać przekształcanie rozpuszczalnej formy we włókna amyloidowe, które tworzą złogi.
      Badania na myszach będących modelem ChA pokazały, że choroba rozwinęła się w zaledwie 2 doby od zakażenia (obserwowano nasilenie akumulacji Aβ42 zarówno w hipokampie, jak i w korze). Pod nieobecność infekcji HSV-1 proces ten zajmuje zwykle kilka miesięcy.
      Opisane przez nas mechanizmy mogą mieć wpływ nie tylko na zrozumienie czynników określających zakaźność wirusów, ale i na opracowanie nowych metod projektowania szczepionek. Zdobyte dowody powinny też zwiększyć zainteresowanie rolą wirusów w chorobach neurodegeneracyjnych, np. ChA.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Izraelscy specjaliści zwracają uwagę na słabe zabezpieczenia sprzętu medycznego i sieci. Stworzony przez nich wirus tak manipulował obrazami wykonanymi za pomocą tomografii komputerowej i rezonansu magnetycznego, że pojawiały się na nich fałszywe guzy nowotworowe. Złośliwe oprogramowanie było też zdolne do usuwania z obrazów rzeczywiście istniejących guzów i nieprawidłowości. W obu przypadkach tego typu atak może mieć poważne konsekwencje dla pacjenta.
      Yisroel Mirsky, Yuval Elovici i dwóch innych specjalistów z Centrum Badań nad Bezpieczeństwem Cyfrowym na Uniwersytecie Ben-Guriona mówią, że np. taki atak można np. przeprowadzić na polityka, by skłonić go do wycofania się z wyborów.
      Izraelczycy dowiedli, że to, co mówią, to nie tylko teoria. Podczas testów wykorzystali swoje oprogramowanie do zmanipulowania zdjęć płuc wykonanych za pomocą tomografu. Zdjęcia dano do przeanalizowania trzem doświadczonym radiologom. Okazało się, że diagnoza niemal zawsze była nieprawidłowa. Tam, gdzie złośliwe oprogramowanie dodało fałszywe guzy nowotworowe, radiolodzy w 99% przypadków zdiagnozowali chorobę. Tam, gdzie prawdziwe guzy nowotworowe zostały usunięte przez wirusa, radiolodzy w 94% przypadków orzekli, że pacjent jest zdrowy. Nawet wówczas, gdy radiologom powiedziano, że będą mieli do czynienia ze zmanipulowanymi obrazami i dano im do przeanalizowali kolejny zestaw zdjęć, to w przypadku tych fotografii, na których wirus dodał fałszywego guza radiolodzy w 60% zdiagnozowali chorobę, a tam, gdzie złośliwy kod guza usunął, radiolodzy w 87% przypadków stwierdzili, że pacjent jest zdrowy. Jeszcze gorzej niż ludzie poradziło sobie oprogramowanie, które jest często wykorzystywane przez radiologów do potwierdzenia diagnozy. Ono w 100% dało się oszukać fałszywym guzom.
      Byłam zaszokowana, przyznaje Nancy Boniel, radiolog z Kanady, która brała udział w badaniach. Poczułam się tak, jakby ktoś usunął mi grunt spod stóp. Zostałam bez narzędzia diagnostycznego.
      Mirsky, Elovici i inni przeprowadzili eksperymenty ze zdjęciami płuc, jednak są pewni, że ich atak będzie też działał w przypadku guzów mózgu, chorób serca, zatorów żylnych, uszkodzeń rdzenia kręgowego, złamań kości, uszkodzeń więzadeł oraz artretyzmu.
      Złośliwe oprogramowanie może losowo dodawać fałszywe guzy do wszystkich obrazów, powodując w szpitalu chaos oraz spadek zaufania personelu do sprzętu medycznego, może też wyszukiwać konkretnych pacjentów po ich nazwisku czy numerze identyfikacyjnym i dodawać fałszywe informacje tylko do ich diagnoz. To zaś oznacza, że osoba poważne chora może nie otrzymać pomocy, a osoby zdrowe zostaną poddane niepotrzebnym, ryzykownym i szkodliwym zabiegom leczniczym. Co więcej, program może też śledzić kolejne badania konkretnego pacjenta i dodawać do nich guzy, fałszywie informując o rozprzestrzenianiu się choroby, lub też pokazywać, że guzy się zmniejszają, sugerując, iż leczenie działa. Jest ono też zdolne do manipulowania wynikami badań klinicznych, przekazując fałszywe dane na temat testowanych leków czy technik leczniczych.
      Mirsky mówi, że atak jest możliwy do przeprowadzenia, gdyż szpitale nie podpisują cyfrowo skanów. Obrazy wykonane przez tomograf i rezonans są przesyłane do stacji roboczych oraz baz danych. Gdyby obrazy cyfrowo podpisywano, a transmisję szyfrowano, niezauważona zmiana obrazu byłaby niemożliwa. Jako, że nie jest to robione, osoba z dostępem do sieci szpitala może zainfekować ją szkodliwym kodem.
      Szpitale przywiązują bardzo dużą uwagę do prywatności. Ale tylko tam, gdzie dane są dzielone z innymi szpitalami czy jednostkami zewnętrznymi. Tutaj istnieją bardzo ścisłe przepisy dotyczące ochrony danych osobowych i medycznych. Jednak to, co dzieje się wewnątrz szpitala to inna historia, stwierdza Mirsky. To, jak się okazuje, problem nie tylko Izraela. Fotios Chantzis, główny inżynier odpowiedzialny za bezpieczeństwo w amerykańskiej Mayo Clinic potwierdza, że sytuacja taka jest możliwa i że wewnętrzne sieci szpitali zwykle nie są zabezpieczone. Wiele szpitali uważa bowiem, że ich sieci są niedostępne z zewnątrz. Nawet tam, gdzie sieci wewnętrzne umożliwiają szyfrowanie, to nie jest ono używane np. ze względów na obawy o kompatybilność ze starszym, wciąż wykorzystywanym, oprogramowaniem.
      Podczas przygotowywania swojego szkodliwego kodu naukowcy z Uniwersytetu Ben Guriona wykorzystali techniki maszynowego uczenia się, za pomocą których wytrenowali wirusa tak, by szybko przedostawał się do obrazów przesyłanych przez sieć szpitalną oraz by dopasowywał umieszczane przez siebie na zdjęciu fałszywe informacje do anatomii pacjenta. Dzięki temu fałszywe guzy wyglądały bardziej realistycznie. Wirus może działać w trybie całkowicie automatycznym, zatem wystarczy wpuścić go do sieci, a wykona swoją pracę bez nadzoru i oczekiwania na polecenia od napastnika.
      Infekcji można dokonać albo mając dostęp do szpitalnych urządzeń i podłączając się do nich za pomocą kabla lub też wykorzystując internet. Izraelczycy odkryli bowiem, że wiele sieci szpitalnych jest albo wprost podłączonych do internetu, albo też w szpitalu istnieje urządzenie, które ma dostęp jednocześnie i do internetu i do sieci wewnętrznej szpitala.
      Izraelczycy przeprowadzili nawet atak na szpital w swoim kraju. Mirsky dostał się, po godzinach pracy, na oddział radiologii i podłączył urządzenie ze złośliwym kodem do wewnętrznej sieci. Cała operacja zajęła mu zaledwie 30 sekund. Nikt go nie niepokoił, nie pytał, co tam robi. Dyrekcja szpitala wydała pozwolenie na przeprowadzenie testu, ale personel nie był o niczym poinformowany.
      Mirsky mówi, że najlepszym sposobem na uniknięcie tego typu ataków byłoby szyfrowanie komunikacji wewnątrzszpitalnej i cyfrowe podpisywanie wszystkich danych, komputery powinny być tak skonfigurowane, by wszczynać alarm, gdy tylko których z obrazów nie jest odpowiednio podpisany. Jednak, jak zauważają specjaliści, nie jest to takie proste. Wielu szpitali nie stać na takie rozwiązania lub też używają starych, często 20-letnich, technologii, które nie wspierają szyfrowania i cyfrowych podpisów. To zmiany, które wychodzą daleko poza same urządzenia i dotyczą całej infrastruktury sieci, zauważa Suzanne Schwartz z amerykańskiej FDA.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rozpoczynając atak na bakterie, bakteriofagi nakłuwają je za pomocą kurczliwego białka. Ponieważ jest ono mikroskopijne, długo nie wiedziano, jak działa i jest zbudowane. Teraz odkryto, że na jego czubku tkwi pojedynczy atom żelaza, utrzymywany w miejscu przez 6 aminokwasów.
      Biofizyk Petr Leiman z Politechniki Federalnej w Lozannie podkreśla, że sporo wiadomo o namnażaniu bakteriofagów, ale już nie o początkowych etapach zakażania ofiar. Stąd pomysł na eksperymenty z dwoma bakteriofagami P2 i Φ92, które atakują pałeczki okrężnicy (Escherichia coli) oraz bakterie z rodzaju Salmonella.
      Naukowcy odnaleźli w przeszłości gen odpowiedzialny za tworzenie białkowego "szpikulca" P2, teraz udało się to w odniesieniu do Φ92. W kolejnym etapie badań Szwajcarzy wyprodukowali oba białka i przekształcili je w kryształy. Dzięki temu do określenia budowy protein mogli się posłużyć krystalografią rentgenowską (promienie rentgenowskie ulegają dyfrakcji na kryształach, a wiązki ugięte rejestruje się za pomocą liczników, ewentualnie błony fotograficznej).
      Mimo że uważano, że krystalografia rozwieje wszelkie wątpliwości związane ze strukturą kurczliwego białka wirusów, tak się jednak nie stało. Podczas prób zrekonstruowania "szpikulca" na podstawie dyfraktogramu okazało się, że brakuje najważniejszego elementu - czubka. Akademicy zmodyfikowali więc gen bakteriofagów w taki sposób, by produkowana była tylko część białka stanowiąca czubek. Po kolejnej krystalografii rentgenowskiej określono wreszcie, jak wygląda i pod mikroskopem elektronowym wykonano zdjęcie dokumentujące przebieg nakłuwania błony zewnętrznej bakterii Gram-ujemnych.
×
×
  • Create New...