Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Okna będą produkowały energię
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Uważamy, że w naszym zasięgu są wysokowydajne wytrzymałe ogniwa fotowoltaiczne z perowskitu i krzemu, stwierdzili badacze z saudyjskiego Uniwersytetu Nauki i Technologii Króla Abdullaha, którzy poddali takie ogniwa najtrudniejszym z dotychczasowych testów wytrzymałościowych. Ogniwa, pracujące przez rok w najbardziej wymagających warunkach, zachowały 80% ze swojej pierwotnej wydajności.
Perowskity mogą być przyszłością energetyki opartej świetle słonecznym. Są tańsze niż krzem, a niedawno stworzono perowskitowe ogniwa słoneczne o wydajności 31%. Teoretyczna maksymalna wydajność ogniw perowskitowych to 40%, podczas gdy ogniw krzemowych to około 29% i jesteśmy już bardzo blisko tej granicy. Jakby tego było mało, niedawno zaprezentowano metodę znacznego zwiększenia wydajności ogniw perowskitowych. Jednak ogniwa takie mają bardzo poważną wadę, ich wydajność znacznie spada pod wpływem temperatury, światła i wilgotności.
Profesorowie Stefaan De Wolf z KAUST i Michele De Bastiani z Università di Pavia zbudowali ogniwa z perowskitów i krzemu, które zostały zamknięte w dwóch warstwach poliuretanu i dwóch warstwach szkła. Ogniwa takie zostały umieszczone na wybrzeżu Morza Czerwonego, gdzie mamy do czynienia z gorącym, wilgotnym klimatem i bardzo silnie operującym słońcem. To jedne z najtrudniejszych warunków dla fotowoltaiki. Ogniwa pracowały tam przez ponad rok, a co 10 minut, pomiędzy godziną 6 a 18 prowadzono testy przepływu prądu i napięcia.
Naukowcy stwierdzili, że największy wpływ na wydajność ogniw miała ich degradacja perowskitu pod wpływem światła i temperatury. Również wpływ pustynnego pyłu był zaskakująco duży. To znany problem dla instalacji fotowoltaicznych, szczególnie w warunkach pustynnych. Nie spodziewaliśmy się jednak, że wpływ pyłu nie był taki sam dla wszystkich długości fali, mówi De Bastiani. To zaś powodowało różną pracę poszczególnych ogniw, co obniżało sprawność całej instalacji.
Bardzo dobrą wiadomością był zaś fakt, że po testach w tak ciężkich panele zachowały ponad 80% ze swojej początkowej sprawności wynoszącej 21,6%. Dlatego też autorzy badań są pełni optymizmu i uważają, że niedługo uda się stworzyć jeszcze bardziej wytrzymałe wysokowydajne ogniwa z perowskitów i krzemu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ogniwo fotowoltaiczne działające w nocy? To nie pomyłka, przekonuje profesor Jeremy Munday z Wydziału Inżynierii Elektrycznej i Komputerowej Uniwersytetu Kalifornijskiego w Davis. Uczony twierdzi, że w idealnych warunkach takie ogniwo mogłoby generować po zachodzie słońca nawet 50 watów na m2. Artykuł na ten temat ogniw dostarczających prąd w nocy opublikowano na łamach ACS Photonics.
Profesor Munday wyjaśnia, że proces generowania energii elektrycznej przez ogniwa fotowoltaiczne działające w nocy jest podobny do tradycyjnych ogniw fotowoltaicznych, ale działa odwrotnie. Obiekt, który jest cieplejszy od otoczenia wypromieniowuje ciepło w postaci podczerwieni. Standardowe ogniwo jest chłodniejsze od słońca, więc absorbuje światło.
Jako, że przestrzeń kosmiczna jest bardzo zimna, cieplejszy od niej obiekt skierowany w jej stronę będzie wypromieniowywał ciepło. Ludzkość od setek lat wykorzystuje to zjawisko do schładzania obiektów w nocy.
Standardowe ogniwa słoneczne absorbują światło, co prowadzi do pojawienia się przepływu prądu. W naszych urządzeniach światło jest emitowane, a prąd i napięcie biegną w przeciwnym kierunku, jednak wciąż generujemy moc. Musimy użyć innych materiałów, ale podstawy fizyczne są te same, mówi Munday.
To samo urządzenie mogłoby też pracować za dnia, jeśli zablokuje się mu bezpośredni dostęp do światła słonecznego lub odwróci w przeciwną do słońca stronę.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zespół profesora Xaioyanga Zhu z University of Texas odkrył, iż dzięki zastosowaniu w ogniwach słonecznych plastikowego półprzewodnika można dwukrotnie zwiększyć liczbę elektronów uzyskiwanych z pojedynczego fotonu. Tym półprzewodnikiem jest policykliczny węglowodór aromatyczny, pentacen.
Przed rokiem pisaliśmy, że profesor Zhu przeprowadził badania, z których wynikało, że wydajność ogniw słonecznym można będzie zwiększyć do 66%. Obecnie najbardziej wydajne urządzenia tego typu są w stanie przekształcić w prąd elektryczny około 31% energii słonecznej. Dzieje się tak, gdyż zdecydowaną większość energii stanowią tzw. gorące elektrony, których nie potrafiliśmy przechwytywać. Zhu pokazał, w jaki sposób można to zrobić. Profesor zaznaczył wówczas, że stworzenie szeroko dostępnej technologii będzie trudne, gdyż wymaga mocnego skoncentrowania promieni słonecznych na panelach, do czego z kolei konieczne jest opracowanie sposobów produkcji ogniw z nowych materiałów.
Teraz zespół pod kierunkiem uczonego znalazł alternatywę. Uczeni odkryli, że możliwe jest uzyskanie dwóch elektronów z pojedynczego fotonu i ich przechwycenie. Co więcej, ich rozwiązanie nie wymagałoby koncentrowania promieni. Okazało się bowiem, że po zaabsorbowaniu fotonu przez pentacen zachodzi zjawisko MEG, o którym informowaliśmy przed kilkoma dniami, przy okazji stworzenia ogniwa słonecznego o zewnętrznej wydajności kwantowej przekraczającej 100%.
Zdaniem Zhu zastosowanie pentacenu pozwoli na zwiększenie wydajności ogniw do 44%.
-
przez KopalniaWiedzy.pl
Artykuł, opublikowany w Nature Communications przez Hidekiego Hiroriego, zapowiada przełom w budowie urządzeń wykorzystujących tranzystory. Odkrycie japońskich uczonych z Kyoto University może prowadzić do pojawienia się niezwykle szybkich tranzystorów oraz bardzo wydajnych ogniw fotowoltaicznych.
Naukowcy pracując ze standardowym arsenkiem galu zaobserwowali, że poddanie próbki działaniu krótkiego impulsu pola elektrycznego o częstotliwości przekraczającej teraherc, spowodowało pojawienie się w niej prawdziwej lawiny par elektron-dziura (ekscytonów).
Wystarczyło włączenie pojedynczego impulsu trwającego pikosekundę, by gęstość ekscytonów, w porównaniu ze stanem wyjściowym próbki, zwiększyła się 1000-krotnie.
Badania nad zastosowaniem terahercowych częstotliwości prowadzone są w laboratorium profesora Koichiro Tanaki, który chce stworzyć dzięki nim mikroskop pozwalający na obserwowanie w czasie rzeczywistym żywych komórek. Wpływ takich częstotliwości na półprzewodnik to efekt uboczny badań, pokazujący jednak, jak wielkie możliwości drzemią w terahercowych częstotliwościach.
-
przez KopalniaWiedzy.pl
Badacze z amerykańskiego Narodowego Laboratorium Energii Odnawialnej (NREL) poinformowali o stworzeniu pierwszego ogniwa słonecznego, którego zewnętrzna wydajność kwantowa wynosi ponad 100%. Dla fotoprądu wartość zewnętrznej wydajności kwantowej - podawaną w procentach - wylicza się na podstawie liczby elektronów przepływających przez obwód w ciągu sekundy podzielonej przez liczbę fotonów z określonej długości fali, wpadających w ciągu sekundy do ogniwa słonecznego. Dotychczas nie istniały ogniwa, których wydajność w jakimkolwiek zakresie fali przekraczałaby 100%. Uczonym z NREL udało się osiągnąć szczytową wydajność kwantową rzędu 114%. W przyszłości może to pozwolić na zbudowanie ogniw słonecznych, z których energia będzie równie tania, lub tańsza, od energii uzyskiwanej z paliw kopalnych czy energii jądrowej.
Mechanizm uzyskania wydajności większej niż 100% bazuje na procesie zwanym Multiple Exciton Generation (MEG), podczas którego pojedynczy foton o odpowiednio wysokiej energii tworzy więcej niż jedną parę elektron-dziura.
W roku 2001 pracujący w NREL Arthur J. Nozik przewidział, że MEG będzie lepiej działało w półprzewodnikowych kropkach kwantowych niż w zwykłych półprzewodnikach. Pięć lat później w pracy opublikowanej wraz z Markiem Hanną Nozik stwierdził, że kropki kwantowe użyte w ogniwach słonecznych mogą zwiększyć ich wydajność o około 35% w porównaniu z innymi nowoczesnymi rozwiązaniami. Ogniwa bazujące na kropkach kwantowych nazywane się ogniwami trzeciej (lub kolejnej) generacji. Obecnie buduje się ogniwa pierwszej i drugiej generacji.
Zjawisko MEG, zwane też Carrier Multiplication (CM), zostało po raz pierwszy zaprezentowane w Los Alamos National Laboratory w 2004 roku. Od tamtej chwili wiele innych ośrodków badawczych potwierdziło jego występowanie w różnych półprzewodnikach. Teraz NREL zaprezentował MEG o wartości większej niż 100%. Badań dokonano przy niskiej intensywności symulowanego światła słonecznego, a mimo to eksperymentalne ogniwo słoneczne osiągnęło wydajność konwersji energii rzędu 4,5%. To bardzo dobry wynik, biorąc pod uwagę fakt, że ogniowo nie było optymalizowane pod kątem wydajności.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.