Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Pantofelek w roli Pac-Mana
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Pantofelek Marii Antoniny Habsburg został sprzedany na aukcji za 43.750 euro. To ponad 4-krotnie więcej, niż specjaliści z domu aukcyjnego Osenat spodziewali się uzyskać. Stan bucika jest dobry (widoczne jest tylko niewielkie wystrzępienie jedwabiu).
Bucik na 4,7-cm obcasie jest wykonany z jedwabiu i koźlęcej skóry. Przód zdobią 4 drapowane wstążki. Wg współczesnej numeracji, trzewik odpowiada mniej więcej rozmiarowi 36. Na obcasie widnieje napis: Soulier de Marie-Antoinette donné à M. de Voisey.
Koniec końców trzewik trafił do Marie-Emilie Leschevin de Prévoisin (1762-1816), bliskiej przyjaciółki Madame Campan (Jeanne Louise Henriette Campan) - damy dworu Marii Antoniny. Bucik pozostawał w rękach jej spadkobierców przez wiele lat.
Maria Antonina to [niemal] mityczna postać, która do tej pory wzbudza zainteresowanie na całym świecie. Bucik jest rzadkim i bardzo delikatnym obiektem. Czas działa na niekorzyść wszelkich przedmiotów wykonanych z tkanin, dlatego nabywca trzewika będzie musiał o niego zadbać. Najlepszą rzeczą, jaką może zrobić, wydaje się umieszczenie go w specjalnej gablotce - podkreśla Jean-Christophe Chataignier z domu aukcyjnego Osenat.
Maria Antonina była córką cesarza Franciszka I i Marii Teresy. Słynęła z rozrzutności i dworskich intryg. Była niepopularna we Francji. Po wybuchu rewolucji francuskiej bezskutecznie starała się o pomoc w rodzinnej Austrii. W 1792 r. osadzona z królem w więzieniu. Podczas dyktatury jakobinów została skazana na śmierć i ścięta.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.
Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.
Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.
Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.
Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.
Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.
Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.
Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.
Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
-
przez KopalniaWiedzy.pl
Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.
Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.
Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.
Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.
Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.
!RCOL
Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.
Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.
Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.
Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
-
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Stanforda ogłosili koniec jednokierunkowej komunikacji radiowej. Opracowali oni urządzenie, które potrafi jednocześnie odbierać i wysyłać sygnały na tej samej częstotliwości.
W podręcznikach jest napisane, że tego się nie da zrobić. Nowy system zupełnie zmienia nasze strategie dotyczące projektowania sieci bezprzewodowych - mówi Philip Levis ze Stanforda.
Prace amerykańskich uczonych pozwolą na praktycznie natychmiastowe dwukrotne zwiększenie przepustowości sieci bezprzewodowych. Oczywiście każdy z nas wie, że rozmawiając przez telefon komórkowy możemy jednocześnie mówić i słuchać, jednak musimy pamiętać, że jest to możliwe dzięki zabiegom technicznym, które ze względu na wysokie koszty nie są stosowane w większości przypadków komunikacji radiowej.
Nowe radio jest dziełem trójki studentów - Jung Il Choia, Mayanka Jaina i Kannana Srinivasana, którym w pracach pomagali profesorowie Philip A. Levis i Sachin Katti. Główny problem, który trzeba było rozwiązać polegał na tym, że przychodzące sygnały radiowe są zagłuszane przez własną transmisję odbiornika. Stąd też dotychczasowa konieczność przełączania odbiorników radiowych w tryb nadawania i nasłuchiwania. Gdy radio przesyła sygnał, jest on miliardy razy silniejszy od sygnału, który może odebrać. To tak, jakby krzyczeć i jednocześnie próbować usłyszeć szept - stwierdza Levis. Młodzi naukowcy zdali sobie jednak sprawę z tego, że gdyby urządzenie potrafiło odfiltrować sygnał ze swojego własnego nadajnika, to mogłoby odebrać sygnał z innego urządzenia. Możesz to zrobić, gdyż nie słyszysz własnego wrzasku, a zatem możesz usłyszeć czyjś szept - wyjaśnia Levis.
Naukowcy skorzystali z faktu, że każdy nadajnik ma precyzyjne informacje o swoim własnym sygnale, zatem może go skutecznie filtrować.
Pierwsza demonstracja nowego systemu odbyła się przed kilkoma miesiącami przed grupą kilkuset inżynierów. Przekonała ona nawet największych niedowiarków, którzy do samego końca twierdzili, że jednoczesne nadawanie i odbieranie sygnału radiowego jest niemożliwe.
-
przez KopalniaWiedzy.pl
W New England Journal of Medicine ukazał się artykuł, którego autorzy informują, że nawet w 25% przypadków glejaka - najbardziej rozpowszechnionego nowotworu mózgu u dorosłych - zaobserwowali delecję genu NFKBIA. Jego usunięcie przyczynia się do wzrostu nowotworu, zwiększa odporność na terapię i, co za tym idzie, znacząco zmniejsza szanse pacjenta na przeżycie.
Glejak to najbardziej złośliwy typ nowotworu mózgu - mówi jeden z autorów badań, profesor Griffith Harsh ze Stanford University School of Medicine. Nieleczeni pacjenci przeżywają zwykle mniej niż 6 miesięcy od czasu postawienia diagnozy. Po interwencji chirurgicznej guzy szybko pojawiają się ponownie. Z kolei radio- i chemioterapia mogą przedłużyć życie, ale nie na długo. Po takim leczeniu pacjenci żyją średnio około 18 miesięcy.
Defekty NFKBIA obserwowanno w wielu typach nowotworów. Zespół ze Stanford University jako pierwszy udowodnił, że jego delacja ma udział w powstawaniu glejaka. Główny autor badań, profesor Markus Bredel mówi, że od 25 lat wiadomo, że do tego nowotworu przyczynia się nieprawidłowa budowa EGFR (epidermal growth factor receptor). Tajemnicą jednak były te przypadki glejaka, w których EGFR było prawidłowe.
Naukowcy spostrzegli najpierw, że pacjenci ze słabą ekspresją NFKBIA są mniej podatni na chemioterapię. Skupili się zatem na badaniach tego genu. Przeanalizowali setki przypadków glejaka z lat 1989-2009 i w aż 25% przypadków zauważyli delecję wspomnianego genu. Jednocześnie uczeni potwierdzili wcześniejsze wnioski dotyczące roli EGFR w rozwoju glejaka i dowiedli, że jedynie w około 5% przypadków doszło do jednoczesnych nieprawidłowości w EGFR i NFKBIA, a osoby, u których wystąpiły one równocześnie, żyły średnio o 40% krócej niż inni cierpiący na glejaka. Dowiedzieli się również, że te dwa czynniki biorą udział w rozwoju większości przypadków wspomnianego nowotworu.
Defekty w NFKBIA i EGFR mają ważny - chociaż różny - wpływ na czynnik transkrypcyjny NF-kappa-B. W normalnych warunkach znajduje się on w cytoplazmie komórki. Jednak gdy zostanie aktywowany, przenika do jądra komórki, gdzie włącza i wyłącza wiele genów, zmieniając zachowanie komórki. EGFR aktywuje NF-kappa-B w taki sposób, że czynnik ten zwiększa zarówno namnażanie się komórek nowotworowych jak i ich odporność na chemioterapię. Z kolei NFKBIA koduje białko I-kappa-B, które jest inhibitorem NF-kappa-B. W normalnych warunkach białko to wiąże się z NF-kappa-B i uniemożliwia mu przeniknięcie do jądra komórki. Gdy jednak dochodzi do delecji NFKBIA ilość białka I-kappa-B ulega redukcji, dzięki czemu zbyt duża ilość NF-kappa-B może wniknąć do jądra komórki, gdzie wskutek nadmiernej aktywności tego czynnika dochodzi do podobnych działań jak wówczas, gdy jest on aktywowany przez EGFR.
Najnowsze odkrycie może w przyszłości doprowadzić do zastosowania nowych leków w leczeniu glejaka. Jeśli bowiem badania wykażą, że u pacjenta cierpiącego na ten nowotwór mamy do czynienia z delecją NFKBIA, będzie można podać mu leki stabilizujące poziom I-kappa-B. Takim lekarstwem jest np. bortezomib, używany do leczenia szpiczaka mnogiego.
Na Northwestern University trwa już wstępny etap badań klinicznych nad użyciem bortezomibu do leczenia glejaka.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.