Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Zaledwie trzynaście lat temu komputer stworzony przez IBM pobił w tej królewskiej grze ludzkiego arcymistrza: Garrego Kasparowa. W przyszłym roku program o nazwie „Watson" rzuci wyzwanie ludzkim mistrzom teleturnieju Jeopardy!

Podobno po przegranym z komputerem turnieju arcymistrz Garry Kasparow miał mówić, że chwilami miał wrażenie, że gra z człowiekiem. Mimo to, od stworzenia programu do skutecznej gry w szachy - grę o wielu kombinacjach ale prostych regułach - do prawdziwej sztucznej inteligencji droga jeszcze daleka. Czy trzynaście lat to wystarczający czas? Być może przekonamy się o tym w lutym przyszłego roku. Wówczas napisany przez IBM program „Watson" (nazwany na cześć twórcy firmy, Thomasa J. Watsona) stanie do walki z ludźmi w popularnym teleturnieju Jeopardy! (ang. ryzyko). W Polsce teleturniej ten znany był pod nazwą Va Banque (prowadził go Kazimierz Kaczor).

Sztuka rozumienia zadanego w naturalnym języku pytania i udzielenia odpowiedzi w takimże języku jest już wystarczająco trudna, Jeopardy! stwarza jednak dodatkowe wyzwanie: w tym programie dostaje się odpowiedź i należy ułożyć do niej poprawne pytanie. Rozwiązań może być zatem więcej i mogą one być formułowane w różny sposób, dodatkowo liczy się prędkość, ponieważ nagrodę zgarnia najszybszy gracz.

 

Najlepsi z najlepszych - po obu stronach

 

Do rywalizacji w imieniu ludzkości stają również nie zwykle zjadacze chleba i uczestnicy teleturniejów, ale najwięksi mistrzowie: Ken Jennings, który wygrał aż 74 turnieje pod rząd w sezonie 2004-2005, oraz Brad Rutter, zdobywca największej wygranej (niemal 3,3 miliona dolarów) podczas czterech turniejów.

Poza prestiżem i chwałą do wzięcia w pokazowej grze jest okrągły milion dolarów. Niezależnie od wyniku zwycięzcą będą instytucje charytatywne - IBM zobowiązał się do przekazania na cele dobroczynne całej ewentualnej wygranej, Jennings i Rutter - połowę uzyskanej sumy.

Mecz Watson kontra Jennings kontra Rutter będzie emitowany w dniach 14-16 lutego 2011. Obok ludzi pojawi się zatem komputerowy awatar. Wiadomo, że rozegrano już pięćdziesiąt próbnych i testowych turniejów pomiędzy sztuczną inteligencją rodem z IBM a ludzkimi zwycięzcami, ale obie strony milczą o ich wyniku. Jednak fakt rzucenia przez zespół programistów rękawicy zdaje się wskazywać, że są oni przekonani o dużych szansach na co najmniej równorzędną rywalizację. O wyniku przekonamy się za dwa miesiące.

Znawcy zagadnienia sztucznej inteligencji za probierz siły algorytmicznego myślenia uważają często grę Go - w której rzeczywiście mimo prostych reguł najlepsze programy nie dorównują wyższej klasy zawodnikom. Jednak stworzenie programu potrafiącego nie tylko szybko i sprawnie sięgać do bazy danych, ale rozumieć i komunikować się w naturalnym języku, będzie nie tylko przełomem, ale zaoferuje wiele praktycznych korzyści. A także, nie da się ukryć, będzie wyjątkowo atrakcyjne medialnie.

 

http://www.youtube.com/watch?v=FC3IryWr4c8

Share this post


Link to post
Share on other sites

hm...a jaka mamy pewnosc ze komputer nie bedzie sterowany przez czlowieka, nie bedzie gdzies w furgonie siedzial tabun ludzi myslacych nad odpowiedziami (pytaniami)? ;)

 

A tak jezeli chodzi o temat...wystarczy troche oleju w glowie zeby stworzyc aplikacje gry w POKERA i gwarantuje, ze wygra nawet z najlepszym pokerzysta.

Szachy wymagaja glownie wiedzy taktycznej aczkolwiek nie opierajacej sie wylacznie na zasadach gry. Otoz najlepsi gracze wykorzystuja nerwy, zmeczenie, mimike przeciwnika, to wlasnie uniemozliwilo wygranie Kasparowowi z "Deeper Blue". Pozatym kraza pogloski ze za kurtynami mogli siedziec ludzie ktorzy pomagali maszynie.

Share this post


Link to post
Share on other sites

hm...a jaka mamy pewnosc ze komputer nie bedzie sterowany przez czlowieka, nie bedzie gdzies w furgonie siedzial tabun ludzi myslacych nad odpowiedziami (pytaniami)? ;)

 

A tak jezeli chodzi o temat...wystarczy troche oleju w glowie zeby stworzyc aplikacje gry w POKERA i gwarantuje, ze wygra nawet z najlepszym pokerzysta.

 

Zakładając odpowiednio dużą liczbę rozdań. W krótszym dystansie może być problem.

 

Otoz najlepsi gracze wykorzystuja nerwy, zmeczenie, mimike przeciwnika, to wlasnie uniemozliwilo wygranie Kasparowowi z "Deeper Blue".

 

Chcesz powiedzieć, że Deep Blue zwodził Kasparowa sugerując mimiką, że nie jest pewny czy robi dobry ruch? Czy też jest wręcz przeciwnie: analizował mimikę Kasparowa i adaptował stosownie strategię?

 

Pozatym kraza pogloski ze za kurtynami mogli siedziec ludzie ktorzy pomagali maszynie.

 

Może. Choć mnie wydaje się to troche bez sensu. Szachy to nie ciężary. Pułk mistrzów nie pokona arcymistrza - widać to w symultanach. Jak mieliby sie podzielić zadaniami? Jeden rusza wieżą a drugi, wybacz mój klatchiański, koniem ?

Share this post


Link to post
Share on other sites

Chcesz powiedzieć, że Deep Blue zwodził Kasparowa sugerując mimiką, że nie jest pewny czy robi dobry ruch? Czy też jest wręcz przeciwnie: analizował mimikę Kasparowa i adaptował stosownie strategię?

Tak gwoli scislosci, Deep Blue zostal zmasakrowany przez Kasparova 3:1

Dopiero Deeper Blue zwyciezyl.

Co do pytania:

Wrecz zupelnie od inszej strony ;)

Komputery nie maja mimiki i wiadomo,ze teorytycznie sie nie mecza.

Wiec Kasparov byl na niby gorszej pozycji bo nie mogl wykorzystac slabosci ludzkich grajac z komputerem.

 

 

Sam Kasparov twierdzil, ze bez problemu mogl odczuc, ze komputer gra na zasadzie przemyslenia wszystkich mozliwych przebiegow gry po kazdym ruchu. Natomiast odczul w kilku ruchach pewna inteligencje na jego zagrania taktyczne.

Share this post


Link to post
Share on other sites

Niestety obecnie nikt nie wygra z komputerem w szachy:) Bodajże w tamtym roku pewien superkomputer rozgryzł wszystkie możliwe kombinacje pozwalające wygrać. Czyli już po pierwszym ruchu, komputer będzie przewidywał dokładnie co zrobić by wygrać i wygra na 100%.

 

Rozpracowanie innych gier, to kwestia czasu i pamięci...

Share this post


Link to post
Share on other sites
Niestety obecnie nikt nie wygra z komputerem w szachy:) [/size] 

Komputery umią się bronić bo tyle umie programista  ;):P  , natomiast nie potrafią  atakować , myślę ze powinni skupić się na obronie tak by maszyna zaczęła wykozystywać któryś ze schematów ataku, a następnie rozpoznać ten schemat , wpuścić w pułapkę i dowalić robotom - ludzie wygrają (w końcu tak naprawdę grają z programistami).

Share this post


Link to post
Share on other sites

Bodajże w tamtym roku pewien superkomputer rozgryzł wszystkie możliwe kombinacje pozwalające wygrać.

IMHO "bodajże" jest bardzo na miejscu. Wszechświat liczy osobie ~1018 s. Komputera o mocy 1018 FLOPS (eksa) dopiero się spodziewamy. Razem do kupy, to jakieś 1036 operacji od Big Bang-u. Najniższe oszacowanie na liczbę możliwych rozgrywek jakie znalazłem w Sieci to 1040. Brakuje mi 104 zakładając ocenę pozycji w jednym FLO.

Link do "bodajże" poproszę...

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Gdy Deep Blue wygrał w szachy z Garri Kasparowem, a w 2016 roku AlphaGo pokonał w go Lee Sedola wiedzieliśmy, że jesteśmy świadkami ważnych wydarzeń. Były one kamieniami milowymi w rozwoju sztucznej inteligencji. Teraz system sztucznej inteligencji „Swift” stworzony na Uniwersytecie w Zurychu pokonał mistrzów świata w wyścigu dronów.
      Swift stanął do rywalizacji z trzema światowej klasy zawodnikami w wyścigu, podczas którego zawodnicy mają założone na głowy specjalne wyświetlacze do których przekazywany jest obraz z kamery drona i pilotują drony lecące z prędkością przekraczającą 100 km/h.
      Sport jest bardziej wymagający dla sztucznej inteligencji, gdyż jest mniej przewidywalny niż gra planszowa niż gra wideo. Nie mamy idealnej wiedzy o dronie i środowisku, zatem sztuczna inteligencja musi uczyć się podczas interakcji ze światem fizycznym, mówi Davide Scaramuzza z Robotik- und Wahrnehmungsgruppe  na Uniwersytecie w Zurychu.
      Jeszcze do niedawna autonomiczne drony potrzebowały nawet dwukrotnie więcej czasu by pokonać tor przeszkód, niż drony pilotowane przez ludzi. Lepiej radziły sobie jedynie w sytuacji, gdy były wspomagane zewnętrznym systemem naprowadzania, który precyzyjne kontrolował ich lot. Swift reaguje w czasie rzeczywistym na dane przekazywane przez kamerę, zatem działa podobnie jak ludzie. Zintegrowana jednostka inercyjna mierzy przyspieszenie i prędkość, a sztuczna sieć neuronowa, na podstawie obrazu z kamery lokalizuje położenie drona i wykrywa kolejne punkty toru przeszkód, przez które dron musi przelecieć. Dane z obu tych jednostek trafiają do jednostki centralnej – również sieci neuronowej – która decyduje o działaniach, jakie należy podjąć, by jak najszybciej pokonać tor przeszkód.
      Swift był trenowany metodą prób i błędów w symulowanym środowisku. To pozwoliło na zaoszczędzenie fizycznych urządzeń, które ulegałyby uszkodzeniom, gdyby trening prowadzony był na prawdziwym torze. Po miesięcznym treningu Swift był gotowy do rywalizacji z ludźmi. Przeciwko niemu stanęli Alex Vanover, zwycięzca Drone Racing League z 2019 roku, Thomas Bitmatta lider klasyfikacji 2019 MultiGP Drone Racing oraz trzykroty mistrz Szwajcarii Marvin Schaepper.
      Seria wyścigów odbyła się w hangarze lotniska Dübendorf w pobliżu Zurychu. Tor ułożony był na powierzchni 25 na 25 metrów i składał się z 7 bramek, przez które należało przelecieć w odpowiedniej kolejności, by ukończyć wyścig. W międzyczasie należało wykonać złożone manewry, w tym wywrót, czyli wykonanie półbeczki (odwrócenie drona na plecy) i wyprowadzenie go półpętlą w dół do lotu normalnego.
      Dron kontrolowany przez Swift pokonał swoje najlepsze okrążenie o pół sekundy szybciej, niż najszybszy z ludzi. Jednak z drugiej strony ludzie znacznie lepiej adaptowali się do warunków zewnętrznych. Swift miał problemy, gdy warunki oświetleniowe były inne niż te, w których trenował.
      Można się zastanawiać, po co drony mają latać bardzo szybko i sprawnie manewrować. W końcu szybki lot wymaga większej ilości energii, więc taki dron krócej pozostanie w powietrzu. Jednak szybkość lotu i sprawne manewrowanie są niezwykle istotne przy monitorowaniu pożarów lasów, poszukiwaniu osób w płonących budynkach czy też kręcenia scen filmowych.
      Warto tutaj przypomnieć, że systemy sztucznej inteligencji pokonały podczas symulowanych walk doświadczonego wykładowcę taktyki walki powietrznej oraz jednego z najlepszych amerykańskich pilotów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W przypadku sztucznej inteligencji z Osaki powiedzenie „wyglądasz na swój wiek” odnosi się nie do twarzy, a do... klatki piersiowej. Naukowcy z Osaka Metropolitan University opracowali zaawansowany model sztucznej inteligencji, który ocenia wiek człowieka na podstawie zdjęć rentgenowskich klatki piersiowej. Jednak, co znacznie ważniejsze, jeśli SI odnotuje różnicę pomiędzy rzeczywistym wiekiem, a wiekiem wynikającym ze zdjęcia, może to wskazywać na chroniczną chorobę. System z Osaki może zatem przydać się do wczesnego wykrywania chorób.
      Zespół naukowy, na którego czele stali Yasuhito Mitsuyama oraz doktor Daiju Ueda z Wwydziału Radiologii Diagnostycznej i Interwencyjnej, najpierw opracował model sztucznej inteligencji, który na podstawie prześwietleń klatki piersiowej oceniał wiek zdrowych osób. Następnie model swój wykorzystali do badania osób chorych.
      W sumie naukowcy wykorzystali 67 009 zdjęć od 36 051 zdrowych osób. Okazało się, że współczynnik korelacji pomiędzy wiekiem ocenianym przez SI, a rzeczywistym wiekiem badanych wynosił 0,95. Współczynnik powyżej 0,90 uznawany jest za bardzo silny.
      Uczeni z Osaki postanowili sprawdzić, na ile ich system może być stosowany jako biomarker chorób. W tym celu wykorzystali 34 197 zdjęć rentgenowskich od chorych osób. Okazało się, że różnica pomiędzy oceną wieku pacjenta przez AI, a wiekiem rzeczywistym jest silnie skorelowana z różnymi chorobami, jak np. nadciśnienie, hiperurykemia czy przewlekła obturacyjna choroba płuc. Im więcej lat dawała pacjentowi sztuczna inteligencja w porównaniu z jego rzeczywistym wiekiem, tym większe było prawdopodobieństwo, że cierpi on na jedną z tych chorób.
      Wiek chronologiczny to jeden z najważniejszych czynników w medycynie. Nasze badania sugerują, że wiek oceniany na podstawie prześwietlenia klatki piersiowej może oddawać rzeczywisty stan zdrowia. Będziemy nadal prowadzili nasze badania. Chcemy sprawdzić, czy system ten nadaje się do oceny zaawansowania choroby, przewidzenia długości życia czy możliwych komplikacji pooperacyjnych, mówi Mitsuyama.
      Szczegóły badań opublikowano na łamach The Lancet.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dyrektor wykonawczy IBM-a Arvind Krishna poinformował, że jego firma przestanie rekrutować ludzi na stanowiska, na których w najbliższych latach mogą być oni zastąpieni przez sztuczną inteligencję. W wywiadzie dla Bloomberga menedżer stwierdził, że rekrutacja na stanowiska biurowe, na przykład w dziale HR, może zostać znacznie spowolniona lub całkowicie wstrzymana. Obecnie na tego typu stanowiskach – gdzie nie ma kontaktu z klientem – IBM zatrudnia 26 000 osób.
      Zdaniem Krishny, w ciągu najbliższych 5 lat sztuczna inteligencja może zastąpić 30% z nich. To oznacza, że w samym tylko IBM-ie maszyny zastąpią 7800 osób. Stąd też pomysł na spowolnienie lub wstrzymanie rekrutacji, dzięki czemu uniknie się zwalniania ludzi.
      Krishna mówi, że takie zadania, jak pisanie listów referencyjnych czy przesuwanie pracowników pomiędzy poszczególnymi wydziałami, prawdopodobnie zostaną całkowicie zautomatyzowane. Inne zaś, takie jak analizy produktywności czy struktury zatrudnienia, ludzie będą wykonywali jeszcze przez kolejną dekadę.
      Błękitny Gigant zatrudnia obecnie około 260 000 osób i wciąż zwiększa zatrudnienie. Potrzebuje pracowników przede wszystkim do rozwoju oprogramowania oraz osób pracujących z klientem. Na początku bieżącego roku firma ogłosiła, że planuje zwolnienia, które w sumie obejmą 5000 osób, ale jednocześnie w I kwartale zatrudniła 7000 osób.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Sztuczna inteligencja lepiej niż technik-elektroradiolog ocenia i diagnozuje funkcjonowanie serca na podstawie badań ultrasonograficznych, wynika z badań przeprowadzonych przez naukowców z Cedars-Sinai Medical Center. Randomizowane testy prowadzili specjaliści ze Smidt Heart Institute i Division of Articifial Intelligence in Medicine.
      Uzyskane wyniki będą miały natychmiastowy wpływ na obrazowanie funkcji serca oraz szerszy wpływ na całe pole badań obrazowych serca, mówi główny autor badań, kardiolog David Ouyang. Pokazują bowiem, że wykorzystanie sztucznej inteligencji na tym polu poprawi jakość i efektywność obrazowania echokardiograficznego.
      W 2020 roku eksperci ze Smidt Heart Institute i Uniwersytetu Stanforda stworzyli jeden z pierwszych systemów sztucznej inteligencji wyspecjalizowany w ocenie pracy serca, a w szczególności w ocenie frakcji wyrzutowej lewej komory. To kluczowy parametr służący ocenie pracy mięśnia sercowego. Teraz, bazując na swoich wcześniejszych badaniach, przeprowadzili eksperymenty, w ramach których wykorzystali opisy 3495 echokardiografii przezklatkowych. Część badań została opisana przez techników, część przez sztuczną inteligencję. Wyniki badań wraz z ich opisami otrzymali kardiolodzy, którzy mieli poddać je ocenie.
      Okazało się, że kardiolodzy częściej zgadzali się z opisem wykonanym przez sztuczną inteligencję niż przez człowieka. W przypadku SI poprawy wymagało 16,8% opisów, natomiast kardiolodzy wprowadzili poprawki do 27,2% opisów wykonanych przez techników. Lekarze nie byli też w stanie stwierdzić, które opisy zostały wykonane przez techników, a które przez sztuczą inteligencję. Badania wykazały również, że wykorzystanie AI zaoszczędza czas zarówno kardiologów, jak i techników.
      Poprosiliśmy naszych kardiologów, by powiedzieli, które z opisów wykonała sztuczna inteligencja, a które technicy. Okazało się, że lekarze nie są w stanie zauważyć różnicy. To pokazuje, jak dobrze radzi sobie sztuczna inteligencja i że można ją bezproblemowo wdrożyć do praktyki klinicznej. Uważamy to za dobry prognostyk dla dalszych testów na wykorzystaniem SI na tym polu, mówi Ouyang.
      Badacze uważają, że wykorzystanie AI pozwoli na szybszą i sprawniejszą diagnostykę. Oczywiście o ostatecznym opisie badań obrazowych nie będzie decydował algorytm, a kardiolog. Tego typu badania, kolejne testy i artykuły naukowe powinny przyczynić się do szerszego dopuszczenia systemów AI do pracy w opiece zdrowotnej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na University of Leeds powstał system sztucznej inteligencji (SI), który analizuje skany oczu wykonywane podczas rutynowych wizyt u okulisty czy optyka i wskazuje osoby narażone na... wysokie ryzyko ataku serca. System analizuje zmiany w miniaturowych naczyniach krwionośnych siatkówki, o kórych wiemy, że wskazują na szerszy problem z układem krążenia.
      Specjaliści z Leeds wykorzystali techniki głębokiego uczenia się, by przeszkolić SI w automatycznym odczytywaniu skanów oraz wyławianiu osób, które w ciągu najbliższego roku mogą doświadczyć ataku serca.
      System, który został opisany na łamach Nature Machine Intelligence, wyróżnia się dokładnością rzędu 70–80 procent i zdaniem jego twórców może być wykorzystany przy diagnostyce chorób układu krążenia.
      Choroby układu krążenia, w tym ataki serca, to główne przyczyny zgonów na całym świecie i druga przyczyna zgonów w Wielkiej Brytanii. To choroby chroniczne, obniżające jakość życia. Ta technika może potencjalnie zrewolucjonizować diagnostykę. Skanowanie siatkówki to tani i rutynowy proces stosowany w czasie wielu badań oczu, mówi profesor Alex Frangi, który nadzorował rozwój nowego systemu. Osoby badane przez okulistę czy optometrystę mogą niejako przy okazji dowiedzieć się, czy nie rozwija się u nich choroba układu krążenia. Dzięki temu leczenie można będzie zacząć wcześniej, zanim pojawią się inne objawy.
      System sztucznej inteligencji trenowano na danych okulistycznych i kardiologicznych ponad 5000 osób. Uczył się odróżniania stanów patologicznych od prawidłowych. Gdy już się tego nauczył, na podstawie samych skanów siatkówki był w stanie określić wielkość oraz wydajność pracy lewej komory serca. Powiększona komora jest powiązana z większym ryzykiem chorób serca. Następnie SI, łącząc dane o stanie lewej komory serca z informacjami o wieku i płci pacjenta, może przewidzieć ryzyko ataku serca w ciągu najbliższych 12 miesięcy.
      Obecnie rozmiar i funkcjonowanie lewej komory serca jesteśmy w stanie określić za pomocą echokardiografii czy rezonansu magnetycznego. To specjalistyczne i kosztowne badania, które są znacznie gorzej dostępne niż badania prowadzone w gabinetach okulistycznych czy optycznych. Nowy system nie tylko obniży koszty i poprawi dostępność wczesnej diagnostyki kardiologicznej, ale może odegrać olbrzymią rolę w krajach o słabiej rozwiniętym systemie opieki zdrowotnej, gdzie specjalistyczne badania są bardzo trudno dostępne.
      Ten system sztucznej inteligencji to wspaniałe narzędzie do ujawniania wzorców istniejących w naturze. I właśnie to robi, łączy wzorce zmian w siatkówce ze zmianami w sercu, cieszy się profesor Sven Plein, jeden z autorów badań.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...