Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Amerykańska armia prowadzi testy polowe kolorowego wyświetlacza, który jest na tyle wytrzymały i lekki, że można nosić go na przedramieniu. Urządzenie może służyć do prezentowania przekazu wideo i innych informacji.

Wyświetlacze mają przekątną 4,3 cala i w ramach testów będą pokazywały żołnierzom obraz wideo rejestrowany przez bezzałogowy samolot zwiadowczy.

Wyświetlacz OLED i potrzebny do jego produkcji nowe materiały fosforescencyjne zostały opracowane przez firmę Universal Displays i są budowane z materiałów dostarczanych przez LG Display. Jego twórcy nie chcą zdradzić szczegółów użytych materiałów, jednak zapewniają, że urządzenie pobiera czterokrotnie mniej energii niż typowy wyświetlacz OLED.

Materiały fosforescencyjne Universal Displays zyskały już uznanie. Czerwony jest wykorzystywany przez Samsunga, największego producenta wyświetlaczy OLED. Rynkowi giganci testują obecnie zielony materiał.

O nowym wyświetlaczu wiadomo niewiele. Zbudowany jest na bazie nierdzewnej stalowej folii dostarczonej przez LG, na której umieszono tranzystory zbudowane z amorficznego krzemu. Użycie metalu w miejsce tworzyw sztucznych ma jednak swoją cenę. Proces produkcyjny jest trudniejszy, gdyż metal ma mniej gładką powierzchnię. Jednak pozwala on na wykorzystanie wyższych temperatur podczas produkcji, dzięki czemu umieszczone na nim kryształy krzemu mają nie tylko lepszą jakość, ale są też bardziej stabilne w czasie.

Share this post


Link to post
Share on other sites

Nic żołdakowi z kompasu jak kulę w łeb dostanie od zaczajonego snajpera.

Może trudno to zauważyć ale snajper to też żołnierz.

Share this post


Link to post
Share on other sites

No tak ale pierwszy strzał snajpera zdradza. A potem ma na głowie coś na kształt airstrike z wormsów. Snajper z założenia eliminuje wybrane cele.

 

Urządzenie ciekawe ale już ileś tam lat temu zapowiadali elektronicznego żołnierza powiem więcej to by chyba nawet miało być już dawno temu w użytku. Jakieś tam systemy w plecaku zintegrowane z mundurem pod kontrolą 2xpentium 100. I chyba nic im z tego nie wyszło bo Windowsy coraz bardziej zasobożerne :). Albo już to zbudowali tylko muszą opracować egzoszkietlet żeby żołnierz mógł to dźwigać ;P

Share this post


Link to post
Share on other sites

Urządzenie ciekawe ale już ileś tam lat temu zapowiadali elektronicznego żołnierza powiem więcej to by chyba nawet miało być już dawno temu w użytku.

 

Projekty Land Warrior i Future Combat System (swoją drogą mamy wśród nich swoje trzy grosze). Ta technologia świetnie by się wpasowywała w ich cele. Niestety życie żołnierza w starciu z nową technologią stało się zbyt mało warte. Aczkolwiek wystarczyłoby wyposażyć w ten sposób tylko oficerów czy służby specjalne.

Share this post


Link to post
Share on other sites

Tak wydaje mi się ze to było właśnie coś na kształt pierwowzoru tego Land Warrior`a Ale to była wtedy tylko teoria. Te dwa pentium 100 mi utknęły w pamięci bo to był jakiś news

Share this post


Link to post
Share on other sites

No tak ale pierwszy strzał snajpera zdradza. A potem ma na głowie coś na kształt airstrike z wormsów. Snajper z założenia eliminuje wybrane cele.

 

Urządzenie ciekawe ale już ileś tam lat temu zapowiadali elektronicznego żołnierza powiem więcej to by chyba nawet miało być już dawno temu w użytku. Jakieś tam systemy w plecaku zintegrowane z mundurem pod kontrolą 2xpentium 100. I chyba nic im z tego nie wyszło bo Windowsy coraz bardziej zasobożerne :). Albo już to zbudowali tylko muszą opracować egzoszkietlet żeby żołnierz mógł to dźwigać ;P

 

Przecież nie ma sensownych urządzeń pod Windowsa - pewnie to chcieli oprzeć na Linuksie czy Uniksie :-)

Share this post


Link to post
Share on other sites

Czy ktoś widział na własne oczy urządzenie wojskowe z zainstalowanym Linuksem lub Windowsem?

Nie mam na myśli, oczywiście, komputera pani Zosi ze sztabu, która pisze rozkazy.

Share this post


Link to post
Share on other sites

Na KW jest artykuł o łodziach podwodnych z UK z windą onboard :).

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      W nowym wyświetlaczu OLED, którego autorami są specjaliści z Samsunga i Uniwersytetu Stanforda, upakowano niemal 10 000 pikseli na cal. Prace te mogą doprowadzić do powstania zaawansowanych wyświetlaczy do rzeczywistości wirtualnej i rzeczywistości rozszerzonej.
      Wyświetlacz OLED składa się z warstw organicznych podzespołów, które emitują światło w reakcji na przepływ prądu. W komercyjnych dużych telewizorach OLED osiągana jest obecnie rozdzielczość 100-200 pikseli na cal (PPI), podczas gdy w wyświetlaczach telefonów udaje się osiągnąć 400-500 PPI.
      Na skalę przemysłową produkuje się dwa rodzaje wyświetlaczy OLED. W urządzeniach przenośnych wykorzystywane są czerwone, zielone i niebieskie organiczne LED (OLED). Używana jest tutaj także metalowa powłoka, której grubość decyduje o wielkości diod, natomiast tendencja metalu do wybrzuszania się ogranicza wielkość wyświetlacza. W dużych wyświetlaczach OLED, stosowanych w telewizorach, mamy zaś białe diody i umieszczone nad nimi kolorowe filtry. W tym przypadku filtry ograniczają możliwość zmniejszania diod decydując w ten sposób o tym ile ich można rozmieścić, a zatem o rozdzielczości.
      Nowy wyświetlacz ma całkowicie odmienną budowę. Użyto tam warstwy OLED emitującej białe światło. Jest ona zamknięta pomiędzy dwiema odbijającymi światło warstwami. Jedna z nich jest srebrna, druga zaś to „metapowierzchnia” założona z dużej liczby mikroskopijnych srebrnych pręcików. Odległości pomiędzy tymi pręcikami są mniejsze niż długość fali światła. Srebrne pręciki mają wysokość 80 nm, a ich szerokość wynosi 100 nm. Są one zorganizowane w klastry, z których każdy reprezentuje 1 piksel. szerokość takiego klastra wynosi 2,4 mikrometra, czyli na calu zmieści się ich około 10 000.
      Każdy piksel metapowierzchni nowego wyświetlacza podzielony jest na cztery subpiksele o jednakowych rozmiarach. Światło pada na pręciki i się od nich odbija. A o tym, jaki kolor ma światło odbite od każdego z pręcików decyduje odległość pomiędzy pręcikami. Tam, gdzie pręciki są najgęściej upakowane uzyskamy kolor czerwony, zielony podchodzi od pręcików umiarkowanie upakowanych, a niebieski uzyskuje się tam, gdzie między pręcikami są największe odległości.
      Światło wlelokrotnie odbija się pomiędzy warstwami, a w końcu z nich ucieka. Jak mówią badacze, dzięki takiej interakcji światła z materiałami wyświetlacza uzyskano też dwukrotnie większą jasność w porównaniu ze standardowymi OLED wykorzystującymi filtry oraz wyższą czystość kolorów. Inżynier Mark Brongersma ze Stanford University porównuje to do pudła rezonansowego instrumentów, które pozwala im na uzyskanie pięknego czystego dźwięku. To samo dzieje się tutaj ze światłem. Różne jego kolory rezonują z pikselami.
      Główny autor badań, Won-Jae Joo z Samsung Advanced Institute of Technology mówi, że teoretyczny limit rozdzielczości takiego wyświetlacza to około 20 000 pikseli na cal. Problemem jest tutaj spadek jasności, do jakiego dochodzi, gdy pojedynczy piksel ma wymiary mniejsze niż mikrometr.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      LED, OLED, a może QLED. Przekonaj się, jaka technologia najlepiej sprawdzi się w Twoim domu.
      LED, OLED, QLED - czym się różnią?
      To najpopularniejsze typy technologii, z jakimi możesz się teraz spotkać.
      Najbardziej znany, bo też najstarszy, jest LED. Telewizory LED mają ciekłokrystaliczne ekrany z wbudowanymi diodami LED. Zazwyczaj są dużo tańsze od pozostałych typów telewizorów. Ich zaletą jest zdecydowanie to, że są dostępne w największej rozpiętości rozmiarów. Minusy to częste, zwłaszcza przy słabszych typach telewizorów, zniekształcanie obrazów oraz rozmazywanie się obrazu w widzeniu kątowym.
      Telewizory OLED mają natomiast matrycę stworzoną z diod z polifenylenowinylenu. Gwarantuje to większą szerokość kątów widzenia niż w przypadku telewizorów LED. Minusem zdecydowanie jest wyższa cena i możliwość wypalania się obrazu. Plusów jest jednak znacznie więcej. To bardzo dobra jakość obrazu oraz wysoki kontrast. Ekran w telewizorach OLED szybciej reaguje też na zmiany.
      Telewizory QLED to najmłodszy, ale też najbardziej zaawansowany typ telewizorów. To nazwa firmowa zarezerwowana przez Samsung. W przypadku tych telewizorów wykorzystywane jest podświetlenie LED, nie OLED, oraz kropki kwantowe. Taki „tuning” dobrze znanej i sprawdzonej technologii pozwala uzyskać jeszcze bardziej żywy i nasycony obraz. Technologia QLED 2020 zapewnia jednak także bardzo naturalne kolory. Nawet gdy wybierzesz mały telewizor Samsung qled 55 cali, obraz będzie bardzo dokładny.
      OLED a QLED - który jest lepszy
      Technologia OLED na pewno spodoba się wielbicielom głębokich kontrastów. Niektóre telewizory mogą mieć też szerszy kąt widzenia, ale idzie za tym też pewien minus, czyli wyświetlanie statycznych elementów przez dłuższy czas na ekranie. Technologia QLED a dokładniej najnowsza QLED 2020, ma wyższą jasność. Kto to doceni? Na pewno wszystkie osoby, które mają umieszczony telewizor w bardzo jasnym, nasłonecznionym pomieszczeniu. Telewizory Samsung QLED 2020, podobnie jak OLED, zazwyczaj są dostępne w dużych rozmiarach i właśnie przy większych gabarytach QLED może stać się dla Ciebie niekwestionowanym zwycięzcą. Cena telewizorów w tej technologii jest zazwyczaj o wiele niższa, niż konkurencyjnych o tej samej przekątnej. Znajdziesz tu jednak także klasyczne małe rozmiary, jak Samsung QLED 55 cali.
      Rozmiar telewizora - dobierz idealny do pomieszczenia
      Niezależnie od tego, czy wybierasz telewizor w technologii LED, OLED czy Samsung QLED 2020, na komfort oglądania będą miały też wpływ odpowiednio dopasowane wymiary telewizora do pomieszczenia. Za mały telewizor do Twojej odległości, podobnie jak zbyt duży, może negatywnie wpłynąć na jakość Twojego doświadczenia. Ogólnie zakłada się, że jeśli na przykład Twoja kanapa znajduje się w odległości mniejszej niż 2,5 metra od telewizora, wtedy nie może być on zbyt duży. Najlepiej wybierz wtedy telewizor 55 calowy, na przykład telewizor Samsung 55 cali qled lub innej marki. Jeśli siedzisz natomiast już ponad 3,5 metra od niego, możesz sobie pozwolić na telewizor nawet 85-calowy. Jest to jednak jeszcze uzależnione od technologii HD. W przypadku FULL HD telewizor LED czy telewizor QLED 55 cali powinien znajdować się maksymalnie 3,2 m od Ciebie. Parametry te zmieniają się w przypadku technologii 4K, czyli wyższej niż FULL HD. Tutaj w związku z większą liczbą pikseli na cal, możesz z bliższej odległości komfortowo oglądać na większej matrycy. Zakłada się, że telewizor w 4K może być nawet dwukrotnie większy od tego w technologii FULL HD. Dlatego planowany telewizor qled 55 cali można zastąpić wtedy telewizorem qled o przekątnej nawet ok. 80 cali.
      Rozdzielczość 8K - nowość 2020
      Jeśli jesteś tv maniakiem i zależy Ci na jak najlepszych i najbardziej luksusowych przeżyciach podczas oglądania filmów czy telewizji, zainteresuj się technologią 8K.
      Odsyła ona 4K w zapomnienie. Dzięki 33 milionom pikseli na ekranie, każdy detal jest niezwykle wyraźny. Obraz jest tak naturalny, że tworzy zupełnie nową jakość widzianych już wcześniej materiałów. I to nawet jeśli oglądasz je na największym ekranie. Czyli generalnie swoje ulubione filmy musisz obejrzeć jeszcze raz, żeby odkryć je w zupełnie nowej jakości. Telewizor z taką rozdzielczością warto jednak przede wszystkim kupić w większych rozmiarach. Telewizor samsung 55 cali qled byłby po prostu za mały. Minimalna przekątna powinna wynosić to 65-75 cali.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Nanjing Tech University opracowali elastyczny wyświetlacz z żelatyny pozyskiwanej z rybich łusek. W gorącej wodzie (60°C) film żelatynowy rozpuszcza się w ciągu paru sekund, a w glebie ulega całkowitemu rozkładowi w ciągu 24 godzin. Rozwiązanie opisane na łamach ACS Nano jest zarówno tanie, jak i ekologiczne. Dotąd do tego celu wykorzystywano tworzywa sztuczne.
      Jak podkreśla Hai-Dong Yu, można by w ten sposób wykorzystać rybie łuski, które zazwyczaj nie są zjadane i trafiają na wysypisko. Podczas eksperymentów z łusek ekstrahowano żelatynę. Jej roztwór wlewano do szalek Petriego.
      Do żelatyny dodawano wykazujący właściwości elektroluminescencyjne siarczek cynku domieszkowany miedzią oraz pełniące funkcje elektrod srebrne nanodruciki.
      Siarczek ten jest wykorzystywany jako luminofor w grubowarstwowych źródłach światła. Takie struktury elektroluminescencyjne są nazywane zmiennoprądowymi lampami EL (ang. alternating current electroluminescent devices, ACEL devices).
      Podczas testów wykazano, że żelatynowe filmy (FG) miały niezbędne cechy, by dało się zastosować w ubieralnych urządzeniach: odpowiednią elastyczność i przepuszczalność. Ważna jest też niska chropowatość powierzchni.
      Przepuszczalność FG dla pasma światła widzialnego wynosiła 91,1%, a to wartość porównywalna do poli(tereftalanu etylenu), PET - 90,4%. W przypadku materiału kompozytowego z nanodrucikami (Ag NWs-FG) sięgała ona 82,3%. ACEL świeciło nawet po 1000-krotnym wygięciu i rozprostowaniu.
      Jesteśmy podekscytowani zwiększeniem szans na rozwój "zielonej" elastycznej elektroniki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ultracienkie elastyczne ekrany dotykowe, które można zwijać jak papier, stały się rzeczywistością. Są one dziełem australijskich naukowców z RMIT University. Nanopłachty są 100-krotnie cieńsze niż materiały obecnie stosowane do produkcji ekranów dotykowych.
      Nowa technologia jest kompatybilna z istniejącymi technikami produkcji, a naukowcy mają nadzieję, że dzięki niezwykłej elastyczności ekrany dotykowe będzie można produkować w rolkach, podobnie jak wytwarza się gazety. O szczegółach badań, w których brali udział również naukowcy z Uniwersytetu Nowej Południowej Walii, Monash Univeristy oraz ARC Centre of Excellence in Future Low-Energy Electronic Technologies, poinformowano na lamach Nature Electronic.
      Jak zauważa główny autor badań, doktor Torben Daeneke, obecnie większość wyświetlaczy dotykowych w smartfonach wytwarza się z przezroczystego tlenku indowo-cynowego. To dobrze przewodzący, ale bardzo kruchy, materiał. Wzięliśmy ten stary materiał i przetworzyliśmy go od wewnątrz tak, że uzyskaliśmy nową wersję, która jest niezwykle cienka i elastyczna, mówi Daeneke. Teraz można go zginać, skręcać i wytwarzać znacznie taniej i bardziej efektywnie niż materiał, którego obecnie używamy do ekranów dotykowych. Jest też bardziej przezroczysty, zatem przepuszcza więcej światła. To wszystko oznacza, że telefony komórkowe wyposażone w nasz materiał będą zużywały mniej energii, co wydłuży czas pracy na bateriach o około 10%, stwierdza uczony.
      Nowa powłoka powstała dzięki podgrzaniu stopu indu i cyny do temperatury 200 stopni, dzięki czemu stał się płynny. Następnie materiał wylano ultracienką warstwą na płaską powierzchnię, uzyskując powłokę 2D. Powłoka ta ma taki sam skład chemiczny jak standardowe wyświetlacze, jednak inną strukturę krystaliczną, która nadaje jej nowe właściwości mechaniczne i optyczne. Jest w pełni elastyczna i absorbuje jedynie 0,7% światła, podczas gdy standardowy wyświetlacz pochłania nawet 10% światła.
      Przewodnictwem nowej powłoki można manipulować dodając kolejne warstwy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Współczesne wyświetlacze są bardzo wygodnymi urządzeniami zapewniającymi świetny obraz i dającymi dobrą kontrolę nad urządzeniem. Ich najpoważniejszą chyba wadą jest dość spore opóźnienie w reakcji na dotyk użytkownika, średnio wynosi ono 100 ms. Oczywiście nie przeszkadza to zbytnio w niczym, jednak nie daje poczucia pełnej kontroli nad urządzeniem. Dlatego też specjaliści z Microsoft Research postanowili zmniejszyć to opóźnienie, udoskonalając w ten sposób wyświetlacze dotykowe.
      Paul Dietz z Microsoftowej Applied Sciences Group zaprezentował właśnie wyświetlacz, którego opóźnienie wynosi zaledwie 1 ms. Różnica w sposobie pracy z urządzeniem wyposażonym w taki wyświetlacz jest bardzo wyraźna. Rysując coś palcem czy piórkiem na tablecie mamy poczucie, jakby rzeczywiście linie były dziełem naszego palca bądź piórka. W obecnie używanych wyświetlaczach linia podąża za palcem a nie wychodzi spod niego.
      Użytkownicy tabletów czy smartfonów zapewne z radością powitaliby zaprezentowane przez koncern z Redmond urządzenie. Problem jednak w tym, że Microsoft nie produkuje wyświetlaczy, a badania mają cel jedynie akademicki. Nie wiadomo zatem, czy koncern w swoich pracach brał pod uwagę kwestie kosztów produkcji takiego wyświetlacza i czy byłby skłonny np. licencjonować swoją technologię.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...