Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Kiedy w 1965 roku przypadkowo dostrzeżono mikrofalowe promieniowanie tła (inaczej: promieniowanie reliktowe), szybko zdano sobie sprawę z wagi odkrycia. Mimo to pierwszą mapę rozkładu tego promieniowania, będącego śladem Big Bangu, wykonano dopiero w 1992 roku dzięki satelicie COBE. Była ona jednak mało dokładna, dlatego w 2001 roku rozpoczęła się misja WMAP (Wilkinson Microwave Anisotropy Probe) mająca na celu sporządzenie dokładnej mapy nieba w promieniowaniu mikrofalowym. Wykonanie wszystkich pomiarów trwało aż dziewięć lat i dopiero w sierpniu tego roku satelita przesłał ostatnie zgromadzone dane.

WMAP ostatecznie potwierdził, mimo pojawiających się wątpliwości, że znana nam materia stanowi mniejszość we wszechświecie. Atomy, jakie opisują nasze teorie to zaledwie 4,6 procenta jej masy (wcześniej szacowano ją nawet na jedynie 4%). Reszta to dwa składniki, których nie rozumiemy. Ciemna materia tworzy 23 procent wszechświata (nieco więcej, niż dotychczas sądzono) i próbuje się ją znaleźć i zidentyfikować w laboratorium. Ciemna energia, która ma dziwne właściwości odpychania grawitacyjnego to 72 procent (nie 74%, jak dotychczas sądzono).

WMAP był pierwszym satelitą pracującym w punkcie grawitacyjnej równowagi L2 układu Ziemia - Słońce, półtora miliona kilometrów od Ziemi. Ósmego września satelita uruchomił silniki, opuścił punkt L2 i wszedł na stałą orbitę parkingową wokół Słońca.

Analiza zgromadzonych informacji zajmie naukowcom całe lata, a już teraz miejsce amerykańskiego WMAP w punkcie L2 zajmuje teraz europejski satelita misji Planck, wystrzelony w ubiegłym roku, który ma dostarczyć jeszcze bardziej szczegółowych danych.

Share this post


Link to post
Share on other sites

WMAP ostatecznie potwierdził

(...)

Analiza zgromadzonych informacji zajmie naukowcom całe lata

 

BTW. kiedyś był "czarny lud", teraz jest ciemna materia/energia... zastanawiające, że wszystko co nieznane określane jest ciemnymi barwami (pewnie jakby nie czarne dziury to byłaby czarna materia)

Share this post


Link to post
Share on other sites

Bo po ciemku nie widać. :)

Zapewne gdyby ludzie doskonale widzieli w ciemności, a światło ich oślepiało, symbolika byłaby odwrotna.

Share this post


Link to post
Share on other sites

ciemna materia bo nie emituje światła, w przeciwieństwie do znanej nam materii.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Fizycy z Uniwersytetu w Sztokholmie i Instytutu Fizyki im. Maxa Plancka zaproponowali rewolucyjny sposób na zarejestrowanie istnienia ciemnej materii. Uczeni chcą wykorzystać plazmę i specyficzną antenę do zarejestrowania aksjonów. Jedna z teorii mówi, że jeśli aksjony istnieją, to właśnie one mogą tworzyć ciemną materię.
      Szukanie aksjonów jest jak dostrajanie radia. Trzeba ustawić antenę tak, by złapać odpowiednią częstotliwość. W tym wypadku zamiast muzyki 'usłyszymy' ciemną materię, przez którą podróżuje Ziemia. Przez ostatnie trzy dekady, od czasu nadania im nazwy przez Franka Wilczka, aksjony były jednak ignorowane i nie poszukiwano ich metodami eksperymentalnymi, mówi główny autor obecnych badań, doktor Alexander Millar z Uniwersytetu w Sztokholmie.
      Z przeprowadzonych właśnie badań wynika,że wewnątrz pola magnetycznego aksjony powinny wytwarzać niewielkie pole magnetyczne, które można wykorzystać do wywołania oscylacji w plazmie. Te oscylacje wzmocnią sygnał z aksjonów, dzięki czemu możemy uzyskać lepsze 'aksjonowe radio'. Zwykle podobne eksperymenty prowadzi się w rezonatorach, jednak to, co proponują uczeni ze Szwecji i Niemiec ma olbrzymią zaletę – brak tutaj ograniczeń co do możliwości wzmacniania sygnału. Różnica jest taka, jak pomiędzy próbami złapania sygnału z krótkofalówki albo z radiowej wieży nadawczej.
      Bez zimnej plazmy nie może dojść do konwersji aksjonów w światło. Plazm odgrywa tutaj podwójną rolę. Tworzy środowisko pozwalające na konwersję i dostarcza plazmonów zbierających energię przemienionej ciemnej materii, mówi doktor Matthew Lawson ze Sztokholmu. To całkowicie nowy sposób poszukiwania ciemnej materii, który pozwoli na poszukiwanie w zupełnie niebadanych obszarach jednego z najlepszych kandydatów do tego miana, dodaje Millar.
      Rolę 'aksjonowego radia' ma odegrać coś, co naukowy nazwali 'drucianym metamateriałem'. Ma to być zbiór przewodów cieńszych od ludzkiego włosa, które mogą być poruszane, by zmienić częstotliwość drgań plazmy. Jeśli umieści się je wewnątrz silnego magnesu, takiego, jakie są używane w maszynach do rezonansu magnetycznego, 'druciany metamateriał' stanie się bardzo czułą anteną nasłuchującą aksjony. Urządzenie takie zostało nazwane haloskopem plazmowym.
      Naukowcy z Uniwersytetu w Sztokholmie i Instytutu Maxa Plancka prowadzili co prawda badania teoretyczne, ale ściśle przy tym pracowali z grupą eksperymentatorów z Berkeley. Teraz Amerykanie zajmują się pracami koncepcyjymi nad odpowiednim eksperymentem i mają nadzieję, że w najbliższej przyszłości uda im się zbudować odpowiednie urządzenie do poszukiwania aksjonów. Haloskopy plazmowe to jeden ze sposobów na poszukiwanie aksjonów. Fakt, że ludzie zajmujący się badaniami eksperymentalnymi tak szybko zainteresowali się naszą pracą jest bardzo ekscytujący i daje nadzieję, że zostaną przeprowadzone odpowiednie eksperymenty, cieszy się Millar.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Instytut Radioastronomii im. Maxa Plancka w Bonn zaproponowali nowy eksperyment, dzięki któremu mamy dowiedzieć się więcej na temat interakcji pomiędzy ciemną materią, a materią. Ich propozycja została opublikowana na łamach Physical Review Letters.
      Przed około 400 laty Galileusz stwierdził, że w polu grawitacyjnym ziemi wszystkie ciała doświadczają takiego samego spadku swobodnego. Niedawno przeprowadzony eksperyment z użyciem satelity potwierdził uniwersalność swobodnego spadku w polu grawitacyjnym Ziemi z dokładnością 1:100 bilionów.
      Takie eksperymenty pozwalają jednak przetestować tylko uniwersalność zasady swobodnego spadku w odniesieniu do materii. Tymczasem zwykła materia stanowi niewielką część materii wszechświat.
      Jako, że nie znamy natury ciemnej materii, nie wiemy w jaki sposób może ona oddziaływać z materią, jakie siły wchodzą tutaj w rachubę. Czy interakcja pomiędzy materią a ciemną materią odbywa się za pomocą czterech znanych rodzajów oddziaływań podstawowych (grawitacyjne, elektromagnetyczne, silne, słabe) czy też mamy tu do czynienia z hipotetycznym dodatkowym oddziaływaniem, nazwanym „piątą siłą”.
      Naukowcy z Bonn proponują zweryfikowanie istnienia „piątej siły” za pomocą gwiazdy neutronowej. Są dwa powody, dla których pulsar w układzie podwójnym pozwala na przeprowadzenie nowatorskich badań oddziaływania pomiędzy materią a ciemną materią. Po pierwsze, gwiazda neutronowa składa się z materii, której nie możemy odtworzyć w laboratorium. Jest ona wielokrotnie bardziej gęsta niż jądro atomowe, złożona niemal w całości z neutronów. Ponadto niezwykle silne pola grawitacyjne wewnątrz gwiazdy neutronowej, miliard razy silniejsze niż pole grawitacyjne Słońca, może znakomicie wzmacniać interakcje z ciemną materią, mówi Lijing Shao z Instytutu im. Maxa Plancka.
      Orbity pulsarów w układach podwójnych można precyzyjnie mierzyć. W niektórych przypadkach znamy orbitę takiej gwiazdy z dokładnością większą niż 30 metrów.
      Zespół naukowy z Bonn postanowił przetestować swój pomysł wykorzystując w tym celu pulsar PSR J1713+0740 oddalony od Ziemi o około 3800 lat świetlnych. To jeden z najbardziej stabilnych znanych nam pulsarów. Pojedynczy obrót wokół własnej osi zajmuje mu 4,6 milisekundy, a sam pulsar krąży wokół białego karła po niemal kołowej orbicie o okresie 68 dni. To dobry obiekt do badań, gdyż im większa orbita, tym bardziej ciemna materia powinna ją zakłócać. Jeśli swobody spadek w polu grawitacyjnym ciemnej materii jest inny niż w polu grawitacyjnym białego karła (materia), to z czasem powinno dochodzić do deformacji orbity pulsara.
      Przez ponad 20 lat precyzyjnych pomiarów prowadzonych za pomocą teleskopu Effelsber i innych radioteleskopów, wykazano, że nie dochodzi do zmian orbity. A to z dużym prawdopodobieństwem oznacza, że pulsar jest w ten sam sposób przyciągany do ciemnej materii co do materii, stwierdził Norbert Wex.
      Naukowcy uważają, że jeszcze lepsze badania można przeprowadzić w miejscach gdzie, jak się przypuszcza, występuje dużo ciemnej materii. "Idealnym miejscem jest centrum galaktyki, które obserwujemy w ramach projektu Black Hole Cam. Gdy uruchomiony zostanie teleskop Square Kilometre Array będziemy mogli przeprowadzić niezwykle precyzyjne testy", mówi Michael Kramer.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po zakończeniu naszych badań wiemy o ciemnej materii mniej niż przedtem. Te słowa Marka Walkera z Harvard-Smithsonian Center for Astrophysics pokazują, po jak niepewnym terenie poruszamy się badając wszechświat.
      Zgodnie z obecnie obowiązującym modelem kosmologicznym wszechświat zdominowany jest przez ciemną energię i ciemną materię. Astronomowie uważają, że ciemna materia składa się z zimnych (czyli mających niską energię) egzotycznych cząsteczek, które pod wpływem grawitacji zbijają się w grupy. Po pewnym czasie ciemnej materii jest tak dużo, że przyciąga ona widoczną materię, tworząc galaktyki.
      Komputerowe modelowanie tego zjawiska wskazuje, że ciemna materia powinna być gęsto upakowana i znajdować się w centrach galaktyk. Tymczasem prowadzone przez Walkera i jego zespół badania dwóch galaktyk karłowatych wykazały, że ciemna materia jest w nich równomiernie rozłożona. Wyniki naszych badań stoją w sprzeczności z przypuszczeniami dotyczącymi struktury zimnej ciemnej materii w galaktykach karłowatych. Teorie na jej temat nie zgadzają się z uzyskanymi danymi obserwacyjnymi - dodaje Walker.
      Galaktyki karłowate są idealnymi obiektami do badania ciemnej materii, gdyż stanowi ona aż 99% ich składu.
      Walker i Jorge Peñarrubia z University of Cambridge poddali szczegółowej analizie dwie galaktyki - Karzeł Pieca i Karzeł Rzeźbiarza. Zawierają one od 1 do 10 milionów gwiazd. Są więc mikroskopijne np. w porównaniu z Drogą Mleczną, która zawiera około 400 miliardów gwiazd.
      Naukowcy zmierzyli położenie, prędkość i skład 1500-2500 gwiazd. Gwiazdy w galaktyce karłowatej roją się jak pszczoły w ulu, zamiast poruszać się po eleganckich orbitach, jak w galaktykach spiralnych. To powoduje, że określenie dystrybucji ciemnej materii jest znacznie trudniejsze - stwierdził Peñarrubia.
      Uzyskane przez uczonych dane wskazują, że w obu galaktykach ciemna materia rozkłada się równomiernie na dość dużym obszarze o średnicy kilkuset lat świetlnych.
      Jeśli galaktyka karłowata byłaby brzoskwinią, to standardowy model kosmolgiczny mówi, iż ciemna materia stanowi jej pestkę. Tymczasem badane przez nas dwie galaktyki nie mają pestek - dodaje Peñarrubia.
      Na razie nie wiadomo, jak wytłumaczyć ten fenomen. Już wcześniej sugerowano, że wskutek interakcji pomiędzy materią a ciemną materią ta druga może się rozprzestrzeniać, jednak współczesne symulacje komputerowe nie wskazują, by takie zjawisko miało miejsce w galaktykach karłowatych. Badania Walkera i Peñarrubii mogą być sygnałem, że albo materia wpływa na ciemną materię bardziej, niż sądzimy, albo też ciemna nie jest zimna.
    • By KopalniaWiedzy.pl
      Dzięki hawajskiemu teleskopowi Keck II znaleziono najciemniejszą znaną nam galaktykę. Mówiąc o ciemnej galaktyce astronomia nie przesądza o ilości światła, którą ona emituje, ale o stosunku masy widzialnych gwiazd do masy całej galaktyki. Segue 1, bo tak nazywa się kosmiczne „jądro ciemności" jest 3400 razy cięższa niż wynika z obliczeń masy jej gwiazd widzialnych. Oznacza to, że w olbrzymiej mierze składa się z olbrzymich chmur ciemnej materii.
      Po raz pierwszy o istnieniu „Najciemniejszej Galaktyki" poinformowano przed dwoma laty. Jej odkrywcy twierdzili wówczas, że jest to przypadkowy zbiór grup gwiazd, które pochodzą z pobliskiej galaktyki karłowatej Strzelca. Jednak takie wytłumaczenie nie przekonało astronomów z Cambridge University. Postanowili oni zbadać prędkość poruszania się gwiazd w nowej galaktyce zarówno względem Drogi Mlecznej jak i względem siebie.
      Uczonym udało się zebrać dane dotyczące zawartości żelaza z 7 gwiazd. W trzech z nich zawartość żelaza jest ponad 2500 razy mniejsza niż w Słońcu. To dowodzi, że mamy do czynienia z jednymi z najstarszych i najmniej wyewoluowanych gwiazd - stwierdził Joshua Simon z Carnegie Institution w Waszyngtonie.
      W naszej Drodze Mlecznej, wśród miliardów gwiazd, udało się dotychczas odnaleźć zaledwie 30 tak prymitywnych gwiazd. W Segue 1 już mamy 10% tego, co udało się znaleźć w Drodze Mlecznej. Galaktyki karłowate będą niezwykle ważnym źródłem wiedzy o najbardziej prymitywnych gwiazdach - dodaje Geha.
      Galaktyka posłuży też do badań nad ciemną materią. Uczeni mają nadzieję, że uda się wykryć ślady promieniowania gamma, które, teoretycznie, może być wynikiem kolizji i anihilacji cząsteczek ciemnej materii. Jak na razie kosmiczny teleskop Fermi Gamma Ray nie wykrył takiego promieniowania. Sądzimy, że Fermi albo nie jest w stanie albo ledwo jest w stanie wykryć takie promieniowanie - mówi Simon. Naukowcy nie tracą jednak nadziei. Jego odkrycie byłoby czymś spektakularnym. Ludzie od 35 lat dowiedzieć się czegoś o ciemnej materii i nie poczynili zbyt wielkiego postępu. Nawet zarejestrowanie bardzo słabego promieniowania byłoby znaczącym dowodem na potwierdzenie teoretycznych rozważań o naturze ciemnej materii - dodaje uczony.
    • By KopalniaWiedzy.pl
      NASA przez pięć lat badała 200 000 galaktyk i zdobyła jeden z najbardziej przekonujących dowodów na poparcie tezy, że to ciemna energia powoduje, iż wszechświat rozszerza się coraz szybciej. Podczas badań prowadzonych za pomocą Galaxy Evolution Explorera oraz Anglo-Australian Telescope uczeni „zajrzeli" 7 miliardów lat wstecz.
      Ciemna energia działa tak, jakbyśmy podrzucili piłkę i obserwowali jak oddala się od nas coraz szybciej i szybciej. Uzyskane wyniki pokazują, że ciemna energia jest kosmologiczną stałą, tak, jak chciał tego Einstein. Jeśli przyczyną rozszerzania się wszechświata byłaby grawitacja [jak proponują zwolennicy konkurencyjnej teorii - red.], to nie obserwowalibyśmy takiego stałego działania w czasie - mów Chris Blake, jeden z głównych autorów badań.
      Uważa się, że ciemna energia stanowi 74% wszechświata, ciemna materia to 22%, a reszta przypada na zwykłą energię i materię, które możemy zauważyć.
      Uczeni twierdzą, że po Wielkim Wybuchu decydującą rolę odgrywała grawitacja. Jednak około 8 miliardów lat później wszechświat na tyle się rozszerzył, że oddziaływania grawitacyjne pomiędzy galaktykami osłabły tak bardzo, iż dominującą rolę odgrywa obecnie ciemna energia. W miarę upływu kolejnych lat jej rola będzie rosła.
      Podczas najnowszych badań wykorzystano dwie różne metody. Rozpoczęto od stworzenia olbrzymiej trójwymiarowej mapy galaktyk. Do tego celu wykorzystano Galaxy Evolution Explorera, kosmiczny teleskop działający w paśmie ultrafioletowym, który przebadał około 3/4 widzialnego nieba z setkami milionów galaktyk. Galaxy Evolution Explorer pozwolił nam na zidentyfikowanie jasnych, młodych galaktyk, które są idealne do tego typu badań. Stanowią one punkty odniesienia na wielkiej mapie 3D - mówi Christopher Martin z Caltechu. Jednocześnie za pomocą Anglo-Australian Telescope uzyskano dane na temat światła każdej z galaktyk i określono wzorzec ich rozkładu. Dzięki temu, że we wczesnym wszechświecie fale dźwiękowe wycisnęły rodzaj wzorców wiemy, że pary galaktyk są oddalone od siebie o około 500 milionów lat świetlnych. W ten sposób uzyskano „linijkę", za pomocą której zmierzono odległość różnych par galaktyk od Ziemi. Im bliżej jest dana para od nas, tym dalej wydaje się położona na niebie od innych par. Tak uzyskane informacje nałożono na dane dotyczące prędkości oddalania się par galaktyk od Ziemi, potwierdzając w ten sposób, że wszechświat coraz bardziej przyspiesza.
      Uczeni wykorzystali też swoją mapę do badania, w jaki sposób tworzyły się gromady galaktyk. Gromady takie mogą zawierać tysiące galaktyk, które są do nich przyciągane za pomocą grawitacji. Jednak ciemna energia, powodując odpychanie galaktyk od siebie, spowalnia cały proces. Dzięki temu można zmierzyć, z jaką siłą oddziałuje.
      Obserwacje wykonane w ciągu ostatnich 15 lat doprowadziły do odkrycia, że od czasu Wielkiego Wybuchu wszechświat coraz szybciej się rozszerza. Używając niezależnych metod i danych z Galaxy Evolution Explorera wsparliśmy teorię o istnieniu ciemnej energii - stwierdził Jon Morse, jeden z dyrektorów NASA.
×
×
  • Create New...