Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Obca czasoprzestrzeń w laboratorium
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Równania wywiedzione z ogólnej teorii względności opisują trzy podstawowe konfiguracje czasoprzestrzeni. Teraz udowodniono, że jedna z tych konfiguracji, ważna z punktu widzenia grawitacji kwantowej, jest z natury niestabilna.
Wszystko zaczęło się przed czterema laty, gdy matematyk Mihalis Dafermos z Princeton University zaproponował swojemu doktorantowi Georgiosowi Moschidisowi, by ten spróbował stworzyć matematyczny dowód na niestabilność pewnej konfiguracji czasoprzestrzeni. Dafermos wiedział, że stawia przed studentem niezwykle trudne zadanie i wątpił, czy ten sobie z nim poradzi.
W 2006 roku Dafermos wraz z Gustavem Holzegelem wysunęli przypuszczenie – czyli niedowiedzione twierdzenie, które wydaje się być prawidłowe – o niestabilności przestrzeni anty de Sittera (przestrzeni AdS). Nie sądziłem, by kiedykolwiek zostało to dowiedzione, przyznaje. Zachęcił jednak swojego doktoranta do pracy nad tym niezwykle trudnym problemem.
Okazuje się, że postawił właściwy problem przed właściwym człowiekiem. Od 2017 roku Moschidis w kolejnych pracach udowadnia niestabilność przestrzeni AdS. To zaś oznacza, że jeśli w przestrzeń AdS wrzucimy kawałek materii, pojawi się czarna dziura.
Matematyk Jonathan Luk z Uniwersytetu Stanforda, który zna prace Moschidisa, mówi, że jego osiągnięcie jest zadziwiające. To, co odkrył to ogólny mechanizm niestabilności. Można go odnieść do innych konfiguracji, niezwiązanych z AdS, w których materia lub energia jest zamknięta i nie ma gdzie uciec. Sam Dafermos jest dumny ze swojego byłe studenta i przyznaje, że jego praca to z pewnością najbardziej oryginalna rzecz jaką w ciągu ostatnich lat widział na polu matematyki zajmującej się ogólną teorią względności.
Przypuszczenie o niestabilności odnosi się do einsteinowskich równań dotyczących ogólne teorii względności, które dokładnie przewidują, jak masa i energia wpływają na zagięcie czasoprzestrzeni. W próżni, gdzie nie ma w ogóle materii, czasoprzestrzeń również może być zagięta, a grawitacja może istnieć z powodu gęstości energetycznej samej próżni, którą możemy opisać jako stałą kosmologiczna.
Trzy najprostsze równania odnoszą się do symetrycznych konfiguracji, czyli takich, gdzie zagięcie czasoprzestrzeni jest wszędzie takie samo. W przestrzeni Minkowskiego, gdzie stała kosmologiczna wynosi 0, wszechświat jest idealnie płaski. W przestrzeni de Sittera, gdzie stała kosmologiczna ma wartość dodatnią, wszechświat ma kształt sfery. Natomiast w przestrzeni AdS mamy ujemną wartość stałej kosmologicznej, a wszechświat ma kształt siodła.
Matematycy od dawna zastanawiali się, czy te próżniowe czasoprzestrzenie są stabilne. Co się stanie, gdy zaburzymy je, wrzucając np. kawałek materii. Czy wrócą one do swojego oryginalnego stanu czy też powstanie coś innego. Pytanie można to porównać do pytania o to, co się stanie, gdy wrzucimy kamień do stawu. Czy fale z czasem zanikną, czy też powstanie tsunami?
W 1986 roku udowodniono, że przestrzeń de Sittera jest stabilna. W 1993 roku udowodniono stabilność przestrzeni Minkowskiego. Przypuszczano, że przestrzeń anty de Sittera jest niestabilna. Jednak zbadanie tego problemu wymagało opracowania nowych narzędzi. Matematyka ma wiele narzędzi do badania stabilności. Jednak niestabilność to całkiem inny obszar badawczy. Szczególnie niestabilność tego rodzaju, mówi Dafermos.
Matematycy sądzili, że przypuszczalna niestabilność AdS może wynikać z tego, że jej granice są odblaskowe. Zatem docierające do nich fale odbijają się i wracają. Z poglądem tym zgadzają się fizycy, przyznaje Juan Maldacena, o którego osiągnięciach wspominaliśmy na naszych łamach.
Jeśli zaś granice są odblaskowe, nic się nie może z przestrzeni AdS wydostać, to można przypuszczać, że każda ilość materii czy energii dodana do systemu może zostać skoncentrowana tak bardzo, że powstanie czarna dziura. Pytanie więc brzmi, czy rzeczywiście tak się stanie, a jeśli tak, to jaki mechanizm powoduje tak olbrzymią koncentrację i nie pozwala pozostać materii lub energii w rozproszeniu?
Moschidis rozwiązał problem w oryginalny sposób. Wyobraził sobie, że stoi w środku przestrzeni AdS, co można porównać do stania wewnątrz gigantycznej piłki, której granice leżą w nieskończoności. Jeśli wyślemy ze środka światło, to dotrze ono do krawędzi w skończonym czasie. Stanie się tak z powodu znanego relatywistycznego efektu: chociaż przestrzeń dzieląca nas od granicy jest nieskończona, to dla obiektu czy fali poruszających się z prędkością światła czas zwalnia. Zatem dla obserwatora światło dotrze do granicy AdS w skończonym czasie.
W swoich obliczeniach Moschidis posłużył się cząstką Einsteina-Własowa, która jest często wykorzystywana w modelach dotyczących ogólnej teorii względności. Cząstki te tworzą koncentryczne kręgi na powierzchni czasoprzestrzeni. Gdy wrzucimy takie cząstki do badanej przez nas czasoprzestrzeni, pojawiają się koncentryczne kręgi, z których dwa pierwsze będą największe, gdyż zawierają one najwięcej materii i energii. Pierwsza z fal (1) będzie rozszerzała się na zewnątrz, aż dotrze do granicy, odbija się i ruszy w kierunku centrum, kurcząc się po drodze. Ta kurcząca się fala 1 napotka na swojej drodze falę 2, która wciąż podąża w kierunku granicy i się rozszerza. Jak stwierdził Moschidis, z równania Einsteina wynika, że w takim wypadku fala rozszerzająca się (2) zawsze przekaże swoją energię fali kurczącej się (1). Gdy fala 1 dotrze do środka przestrzeni, znowu zacznie się rozszerzać i na swojej drodze spotka powracającą, kurczącą się, falę 2. Teraz to 1 przekaże energię 2. Taki proces może powtórzyć się wielokrotnie.
Moschidis zdał sobie sprawę z jeszcze jednego faktu. Otóż w pobliżu centrum fale zajmują mniej miejsca, a niesiona przez nie energia jest bardziej skoncentrowana. Z tego też powodu fale spotykające się w pobliżu centrum wymieniają więcej energii, niż te spotykające się w pobliżu brzegów przestrzeni. To zaś powoduje, że fala 1 oddaje fali 2 więcej energii w pobliżu centrum, niż fala 2 oddaje fali 1 energii w pobliżu brzegów.
Po wielu powtórzeniach takiej stacji fala 2 staje się coraz większa i większa, zabierając energię fali 1. Zwiększa się energia fali 2. W końcu jest ona tak wielka, że gdy fala 2 zmierza do centrum, jej energia zostaje tak bardzo skoncentrowana, iż tworzy się czarna dziura.
Moschidis wykazał więc, że gdy dodamy do przestrzeni AdS najmniejszą nawet ilość materii, niewątpliwie utworzy się czarna dziura. Jednak, jako że – z definicji – przestrzeń AdS ma wszędzie jednakowe wygięcie, nie może zawierać obiektów takich jak czarne dziury, zaginających przestrzeń w inny sposób. Jeśli zaburzysz czasoprzestrzeń AdS i poczekasz odpowiednio długo, powstanie inna geometria, zawierająca czarną dziurę, a to już nie będzie AdS. To właśnie nazywamy niestabilnością, mówi Moschidis.
Ostatnio młody uczony udowodnił niestabilność AdS dla zupełnie innego rodzaju zaburzeń, bezmasowego pola skalarnego. Jak zauważa Dafermos, jako że fale generowane w polu skalarnym są przybliżeniem fal grawitacyjnych, to Moschidis przybliżył się w ten sposób do ostatecznego celu – udowodnienia niestabilności AdS w prawdziwej próżni, gdzie czasoprzestrzeń zostaje zaburzona przez grawitację bez udziału materii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli najpotężniejszą eksplozję we wszechświecie od czasu Wielkiego Wybuchu. Eksplozja pochodziła z supermasywnej czarnej dziury znajdującej się w galaktyce położonej setki milionów lat świetlnych od Ziemi. W czasie wybuchu uwolniło się 5-krotnie więcej energii niż z wcześniejszej najpotężniejszej znanej nam eksplozji.
Obserwowaliśmy już takie wydarzenia w centrach galaktyk, ale to jest naprawdę olbrzymie. I nie wiemy, dlaczego jest tak potężne. Wybuch przebiegał bardzo powoli. Jak eksplozja w zwolnionym tempie rozciągająca się setki milionów lat, mówi profesor Melanie Johnston-Hollitt.
Do potężnego wybuchu doszło w Supergromadzie w Wężowniku. Był on tak silny, że wypalił dziurę w supergorącej plazmie otaczającej czarną dziurę.
Początkowo, gdy teleskopy działające w zakresie promieniowania rentgenowskiego zauważyły dziurę w plazmie, odrzucono hipotezę, że mogła ona powstać w wyniku eksplozji, gdyż nie wyobrażano sobie, że może dojść do tak silnego wybuchu.
Sceptycyzm był spowodowany siłą wybuchu konieczną do wywołania takiego efektu. Ale okazało się, że naprawdę do niego doszło. Wszechświat to dziwne miejsce, mówi Johnston-Hollit. Dopiero, gdy do obserwacji zaprzęgnięto radioteleskopy, naukowcy w pełni zdali sobie sprawę z tego, co odkryli. Dane z radioteleskopów pasowały do danych z teleskopów rentgenowskich jak rękawiczka do ręki, dodaje współautor badań doktor Maxim Markevitch z Goddard Space Flight Center.
Profesor Johnston-Hollitt porównuje swoją pracę do archeologii. Mamy teraz narzędzia, radioteleskopy pracujące na niskich częstotliwościach, które pozwolą nam kopać głębiej w przeszłości. Powinniśmy być w stanie wykryć więcej tego typu eksplozji, mówi.
Uczona przypomina, że odkrycia dokonano za pomocą czterech różnych teleskopów, w tym Murchison Widefield Array (MWA), którego budowa jeszcze nie została dokończona. Obecnie MWA składa się z 2048 anten. Wkrótce będziemy mogli wykorzystać 4069 anten, dzięki czemu teleskop będzie 10-krotnie bardziej czuły niż obecnie. MWA to jedna z czterech części Square Kilometre Array (SKA).
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy odkryli chmury pierwotnego gazu, które powstały w ciągu kilku minut po Wielkim Wybuchu. Skład chmur odpowiada teoretycznym przewidywaniom dotyczącym ich budowy.
W Wielkim Wybuchu powstały tylko najlżejsze elementy, w zdecydowanej większości były to wodór i hel. Po kilkuset milionach lat zaczęły w nich powstawać gwiazdy, w których wytworzyły się cięższe pierwiastki, nazywane przez astronomów „metalami".
Dotychczas we wszystkich chmurach gazu odkrywano dużą zawartość metali.
Po raz pierwszy udało się zaobserwować pierwotny gaz, którego nie zanieczyściły metale pochodzące z gwiazd - mówi profesor Xavier Prochaska z Uniwersytetu Kalifornijskiego w Santa Cruz.
Brak metali wskazuje, że mamy do czynienia z pierwotnym gazem. To ekscytujące, gdyż jest to pierwszy gaz, który w pełni odpowiada teoretycznym przewidywaniem co do jego składu, zawartym w teorii Wielkiego Wybuchu - stwierdził Michele Fumagalli, student z UC Santa Cruz i główny autor badań.
Obie chmury pierwotnego gazu zostały odkryte dzięki analizie światła odległych kwazarów dokonanej za pomocą spektrometru HIRES współpracującego z teleskopem Keck I. Dzięki zbadaniu pełnego spektrum możliwe było zaobserwowanie, które długości fali zostały pochłonięte przez materię, znajdującą się pomiędzy kwazarem a teleskopem. Widzimy linie absorpcji tam, gdzie światło pochłonął gaz i możemy dzięki temu zbadać skład tego gazu - dodaje Fumagalli.
Prochaska wyjaśnia, że zastosowany instrument nie pozwala co prawda wykryć helu, ale najprawdopodobniej znajduje się on w chmurach. Zanotowano wodór oraz deuter. HIRES jest bardzo czuły na węgiel, tlen i krzem, ale żadnego z tych elementów nie odnotowano.
Dotychczas najmniejsza zarejestrowana zawartość metali wynosiła 1/1000 ilości znajdującej się w Słońcu. Sądzono, że jest to wartość graniczna, że nic nie może zawierać mniej metali niż 1/1000 zawartości Słońca, gdyż metale są rozpowszechnione w całym wszechświecie. Tak więc nasze odkrycie było niespodziewane. To rzuca nowe światło na sposób rozprzestrzeniania się metali z gwiazd, które je tworzą - mówi Fumagalli.
-
przez KopalniaWiedzy.pl
Czy liczba wymiarów, w których żyjemy, zawsze była taka sama? Fizyk Dejan Stojkovic wraz z kolegami z uniwersytetu w Buffalo zaproponowali nową, ciekawą wizję młodego wszechświata.
Naukowcy zasugerowali że w pierwszych chwilach trwania wszechświat posiadał tylko jeden wymiar - istniał jako linia ciągła. Dopiero podczas dalszej ekspansji pojawiały się kolejne wymiary - linia przekształciła się w płaszczyznę, dalej w trójwymiarową przestrzeń i ostatecznie w czasoprzestrzeń. Co ciekawe, jest możliwe, że w przyszłości w wyniku ekspansji nasz wszechświat uzyska kolejne, dodatkowe wymiary.
Okazuje się, że proponowana hipoteza wyjaśniłaby kilka ważnych kwestii związanych z fizyką cząstek elementarnych z którymi naukowcy nie potrafili sobie poradzić. Wśród nich są: niezgodności pomiędzy mechaniką kwantową a ogólną teorią względności, obserwowalne przyspieszanie rozszerzania wszechświata oraz konieczności zawyżenia masy hipotetycznego bozonu Higgsa. Wszystkie te niejasności znikają kiedy zredukujemy liczbę wymiarów w młodym wszechświecie.
W nowym wydaniu Physical Review Letters Stojkovic i Jonas Mureika przedstawiają doświadczenie które mogłoby potwierdzić wysunięta przez Stojkovica hipotezę "znikających wymiarów". Fale grawitacyjne, podobnie jak światło, potrzebują czasu aby dotrzeć do Ziemi. Obserwując te fale de facto oglądamy historię wszechświata. Im dalej spoglądamy tym starszą widzimy jego historię. Ponieważ fale grawitacyjne nie mogą istnieć w jedno- ani dwuwymiarowej przestrzeni, obserwacje najbardziej odległych rejonów wszechświata powinny udowodnić ich nieobecność w pierwszych chwilach po Wielkim Wybuchu.
Szansą na potwierdzenie tej hipotezy jest uruchomienie projektu LISA (Laser Interferometer Space Antenna). Niestety rozpoczęcie obserwacji planowane jest nie wcześniej niż w roku 2018
Jednak już teraz przeprowadzono pewne eksperymenty wskazujące na istnienie przestrzeni o mniejszej ilości wymiarów. Naukowcy zaobserwowali że strumienie promieniowania kosmicznego o energii przekraczającej 1 TeV (wartości porównywalnej do wartości energii w początkowym wszechświecie) ulegają rozproszeniu jakby znajdowały się w płaszczyźnie dwuwymiarowej.
Również prace fizyków z Wielkiego Zderzacza Hadronów (Large Hadron Collider), poszukujących bozonu Higgsa mogą przyczynić się do potwierdzenia hipotezy "znikających wymiarów". W zderzeniach obserwuje się tam cząstki biegnące w przeciwnych kierunkach. To zagadkowe zjawisko nie zostało do tej pory wyjaśnione. Pisaliśmy o tym wcześniej.
-
przez KopalniaWiedzy.pl
Astrofizycy zgodnie przyjmują, że np. za miliard lat ich koledzy po fachu nie będą w stanie obserwować pozostałości po Wielkim Wybuchu, nie będą dysponowali bowiem dowodami, jakie my już znaleźliśmy i możemy jeszcze znaleźć.
Jak wiemy, wszechświat się rozszerza, galaktyki oddalają się od siebie, a stosunkowo niedawno odkryto mikrofalowe promieniowanie tła - pozostałość po Wielkim Wybuchu.
Jednak za miliard lat wszystkie galaktyki oddalą się od siebie tak bardzo, że znajdą się poza obserwowalnym horyzontem, mikrofalowe promieniowanie tła ulegnie olbrzymiemu rozproszeniu i będzie niewykrywalne. Droga Mleczna zderzy się z galaktyką Andromedy, tworząc Mlecznomedę, tworząc jedną galaktykę, a wiele z jej gwiazd, w tym Słońce, przestanie istnieć.
Jednak teoretyk Avi Loeb z Harvard-Smithsonian Center for Astrophysics uważa, że nawet bez mikrofalowego promieniowania tła i bez widocznych galaktyk, możliwe będzie badanie rozszerzania się wszechświata i poznawanie jego przeszłości. Astronomowie z Mlecznomedy będą mogli używać w swojej pracy najdalszych dostępnych im źródeł światła, czyli superszybkich gwiazd.
Loeb mówi, że co mniej więcej 100 000 lat podwójny układ gwiazd znajduje się zbyt blisko czarnej dziury w centrum galaktyki. Jej obecność powoduje, że układ zostaje rozerwany, jedną gwiazdę wchłania czarna dziura, a druga jest odrzucana z prędkością ponad 1,6 miliona kilometrów na godzinę. To wystarczająco szybko, by opuścić galaktykę. Gdy już gwiazda znajdzie się na tyle daleko, że nie będzie działała na nią grawitacja galaktyki, będzie przyspieszana przez rozszerzanie się wszechświata. Jeśli w przyszłości astronomowie będą dysponowali odpowiednimi instrumentami, to dzięki takim gwiazdom zmierzą tempo ekspansji wszechświata. Badając takie superszybkie gwiazdy będą w stanie stwierdzić, kiedy powstała galaktyka, obliczyć wiek wszechświata i odnaleźć podstawowe parametry kosmologiczne. Będą zatem mogli, tak jak ma to miejsce obecnie, tworzyć teorie podobne do modelu Lambda-CDM.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.