Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W Nature Physics ukazał się artykuł, którego autorzy dowodzą, iż za pomocą odpowiedniego splątania cząstek w układzie pamięci możemy poradzić sobie z zasadą nieoznaczoności Heisenberga.

Zasada ta ogranicza naszą możliwość poznania świata na poziomie kwantowym. Heisenberg stwierdził bowiem, że nie możemy jednocześnie zmierzyć położenia i pędu cząstki, gdyż mierząc jedną, zmieniamy drugą. Bardziej przystępnie wyjaśnił to Paul Dirac, który stwierdził, że jedynym sposobem na zmierzenie położenia cząstki jest odbicie od niej fotonu i sprawdzenie, w którym miejscu detektora foton wyląduje. Uzyskamy w ten sposób informacje o położeniu, jednak sam fakt odbicia od niej fotonu spowoduje, że zmienimy jej pęd.

Z tego też powodu dotychczas naukowcy sądzili, że poznanie z wystarczającą dokładnością obu zmiennych jest niemożliwe.

Teraz jednak grupa uczonych doszła do wniosku, że wykorzystując kwantowe splątanie można uzyskać dokładne informacje o jednej z nich. Pomiar nie będzie co prawda idealnie precyzyjny, jednak uda się dzięki niemu pokonać granicę wyznaczaną przez zasadę nieoznaczoności.

W teoretycznej pracy uczeni twierdzą, że należy maksymalnie splątać cząstkę z kwantową pamięcią. Splątanie takie musi objąć wszystkie stany i stopnie swobody cząstki. Po splątaniu i rozdzieleniu obserwator jest w stanie określić zmienną jednej z cząstek i poinformować zarządzającego pamięcią kwantową, która zmienna została zmierzona. Dane o drugiej zmiennej można uzyskać z układu pamięci, z którym cząstka była splątana.

Artykuł autorstwa naukowców z ETH Zurich, Uniwersytetu Ludwiga Maksymiliana z Monachium, Instytutu Fizyki Teoretycznej w kanadyjskim Waterloo i Uniwersytetu Technicznego z Darmstadt jest rozważaniem czysto teoretycznym, w którym do obliczeń wykorzystano m.in. system Hilberta i entropię. Nie zbudowano jeszcze urządzenia, które pozwoliłoby dowieść prawdziwości ich stwierdzeń. Mimo to samo stworzenie teoretycznej podbudowy pod sposób na poradzenie sobie z ograniczeniami nakładanymi przez nieoznaczoność jest bardzo ważnym wydarzeniem. Jeśli uczeni mają rację, to fizykę kwantową czekają w przyszłości poważne zmiany.

Sami autorzy wspomnianej na początku pracy mają zamiar wykorzystać swoje obliczenia do dalszego badania zjawiska splątania kwantowego.

Share this post


Link to post
Share on other sites

Jeśli to się uda, to napęd nieprawdopodobieństwa znany z Autostopem przez Galaktykę jest w zasięgu ręki. W zasadzie wystarczy, że określę dokładnie (dp=0) swój pęd i już będę mógł być gdziekolwiek.

 

Przy okazji: wyjaśnienie Diraca powinno być zakazane. We wzorze nie ma słowa o energii kwantu oświetlającego.

Share this post


Link to post
Share on other sites

Myślę, że gwoździem programu jest tutaj ta pamięć kwantowa. Bez niej będzie to co teraz, czyli w najlepszym wypadku tzw. teleportacja kwantowa.

 

Pytanie tylko, czy taką pamięć uda się zbudować - podejrzewam, że Natura szykuje naukowcom kilka psikusów, bo zasada nieoznaczoności wynika z właściwości Wszechświata (tak jak np. niemożność zbudowania perpetuum mobile).

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Takie rozwiązanie to marzenie wielu lekarzy i laborantów: mikroigły, w których pustym wnętrzu znajdują się różne elektrochemiczne czujniki. W ten sposób można na bieżąco monitorować przez dłuższy czas chemię całego organizmu, w tym poziom cukru.
      Wewnątrz mikroigieł umieściliśmy kanaliki z szeregiem elektrochemicznych czujników, które można wykorzystać do wykrywania specyficznych cząsteczek albo wartości pH - wyjaśnia dr Roger Narayan z Uniwersytetu Stanowego Karoliny Północnej.
      Stosowane obecnie technologie bazują na pobieraniu próbek i badaniu ich. Tutaj badanie ma charakter ciągły, pozwalając np. na monitorowanie poziomu cukru we krwi diabetyka. Jak opowiada Narayan, w mikroigłach przynamniej jeden z wymiarów nie przekracza 1 milimetra.
      Pomysł jest taki, by dostosowane do indywidualnych potrzeb macierze czujników mikroigłowych wmontowywać w urządzenia przenośne, np. zegarki, znajdując dzięki temu odpowiedź na specyficzne pytania medyczne lub badawcze. Warto też zaznaczyć, że mikroigły są bezbolesne.
      Naukowcy z Uniwersytetu Stanowego Karoliny Północnej, Sandia National Laboratories i Uniwersytetu Kalifornijskiego w San Diego zbudowali na próbę mikroigłę z umieszczonymi wewnątrz czujnikami do pomiaru pH, glukozy i kwasu mlekowego (zastosowano detekcję amperometryczną). Z tym ostatnim wiążą sportowe nadzieje, wspominając, że za jego pomocą dałoby się określić stężenie metabolitu w mięśniach nie przed lub po wysiłku, ale w jego trakcie.
      Kiedy w ramach eksperymentu akademicy zmodyfikowali materiał za pomocą komórkoopornej powłoki (Lipidure), zahamowano przyleganie makrofagów. W ciągu 48 godzin nie doszło do rozwarstwienia powłoki.
    • By KopalniaWiedzy.pl
      Inżynierowie skonstruowali wiskozymetr, czyli urządzenie do badania lepkości różnych cieczy, np. keczupu i kosmetyków, które można włączyć do linii produkcyjnej. Jak tłumaczą wynalazcy z Uniwersytetu w Sheffield, wdrożona technologia pozwala monitorować w czasie rzeczywistym, jak lepkie składniki cieczy zmieniają się w trakcie poszczególnych etapów wytwarzania. Dzięki temu można zachować wszystkie pożądane parametry.
      Zakłady wytwarzające ciekłe produkty muszą wiedzieć, jak ciecze będą się zachowywać w różnych warunkach, ponieważ te rozmaite zachowania mogą wpłynąć na teksturę, smak, a nawet zapach produktu - tłumaczy dr Julia Rees.
      Lepkość większości cieczy zmienia się w różnych warunkach i projektanci często posługują się skomplikowanymi równaniami, które pozwalają wnioskować o charakterze tych zmian. Z nowo opracowanym systemem czujników, przez który ciecz po prostu przepływa, zadanie staje się o wiele prostsze. Na podstawie danych z czujników urządzenie wylicza zakres prawdopodobnych zachowań.
      Firmy pracujące nad nowymi produktami będą mogły włączyć urządzenie do procesu, co oznacza, że nie trzeba będzie pobierać próbek i przeprowadzać na nich kosztownych testów laboratoryjnych. Pozwoli to obniżyć koszty i zwiększyć wydajność produkcji.
      System będzie można skalować. Twórcy wspominają nawet o wersjach dla mikrochipów z kanalikami o średnicy ludzkiego włosa. Takie rozwiązanie sprawdzi się, gdy producenci czy naukowcy będą dysponować minimalną ilością cieczy (np. z próbek biologicznych).
      Ponieważ mikroreometr pracuje w czasie rzeczywistym, gdy zostaną wykryte wady produkcyjnie, nie będzie się marnować czasu, materiałów ani energii - podkreśla współpracownik Rees prof. Will Zimmerman.
      Zespół Rees stworzył na razie laboratoryjny prototyp. Trwają prace nad ulepszeniem technologii i uzyskaniem prototypu projektowego.
    • By KopalniaWiedzy.pl
      Naukowcy z Fermilab odkryli nową cząstkę. Jest nią obojętna Ξb0 (Xi-sub-b), ciężki „krewny" neutronu. Składa się ona z trzech kwarków: dziwnego (strange), górnego (up) i spodniego (bottom). Od nich pochodzi „sub" w nazwie.
      Istnienie Xi-sub-b zostało przewidziane w Modelu Standardowym.  Ξb0 należy do barionów, cząstek stworzonych z trzech kwarków. Najbardziej znanymi barionami są proton i neutron. Xi-sub-b to barion spodni. Tego typu bariony są około 6-krotnie cięższe od protonu i neutronu, gdyż zawierają ciężki kwark spodni.
      Xi-sub-b powstają tylko podczas wysokoenergetycznych kolizji. Trudno je zaobserwować, gdyż żyją przez niezwykle krótki czas. Przed rozpadem zdążą przemieścić się tylko ułamki milimetra. Wychwycenie Xi-sub-b wymagało przeprowadzenia w akceleratorze Tevatron niemal 500 biliardów zderzeń protonów i antyprotonów. Dzięki temu zanotowano 25 sygnałów, mogących świadczyć o odkryciu wspomnianej cząstki. Sygnały oceniono na 7 sigma. Poziom 5 sigma pozwala już mówić o odkryciu.
    • By KopalniaWiedzy.pl
      W Lawrence Berkeley National Laboratory powstały pierwsze trójwymiarowe linijki plazmonowe, za pomocą których można mierzyć liczone w nanometrach zmiany przestrzenne w systemach makromolekularnych. Amerykanom w ich stworzeniu pomagali naukowcy z niemieckiego Uniwersytetu w Stuttgarcie. Linijki takie pozwolą na precyzyjne pomiary np. interakcji DNA z enzymami, zaginania protein czy ruchu peptydów.
      Zademonstrowaliśmy trójwymiarowe plazmonowe linijki bazujące na plazmonowych oligomerach i spektroskopii plazmonowej. Pozwalają nam one na uzyskanie dokładnego obrazu ułożenia przestrzennego złożonych makromolekularnych procesów biologicznych oraz śledzenie ich ewolucji - stwierdził Paul Alivisatos, szef zespołu badawczego.
      W miarę jak badamy coraz mniejsze struktury, koniecznie jest opracowanie narzędzi, pozwalających na ich mierzenie. Dlatego też amerykańsko-niemiecki zespół postanowił wykorzystać plazmony, czyli fale tworzone przez wzbudzone elektrony, powstające wskutek interakcji światła z metalem. Dwie nanocząsteczki metali szlachetnych, znajdujące się blisko siebie, sprzęgną się za pomocą rezonansu plazmonów i powstanie rozpraszająca światło struktura, a jej właściwości będą ściśle zależały od odległości pomiędzy nanocząsteczkami. Ten efekt rozpraszania światła został przez nas wykorzystany do stworzenia linijek plazmonowych, których użyliśmy do mierzenia odległości pomiędzy komórkami - mówi Alivisatos.
      Dotychczas do tego typu pomiarów używano linijek bazujących na barwnikach chemicznych i zjawisku FRET, czyli mechanizmie przenoszenia energii pomiędzy dwoma chromoforami. Użycie plazmonów ma tę przewagę, że w ich przypadku nie mamy do czynienia z blaknięciem czy migotaniem. Są one ponadto bardzo jasne i stabilne.
      Do niedawna używano wyłącznie dwuwumiarowych linijek plazmonowych, gdyż uczeni nie potrafili sobie poradzić ze zbyt dużym rozpraszaniem światła, do jakiego dochodziło gdy wiele nanocząsteczek metali znajdowało się blisko siebie i poruszały się one w trzech wymiarach. W tak uzyskiwanym obrazie spektrum rozpraszanego światła było bardzo szerokie i niemożliwe było wyłonienie poszczególnych elementów, które można byłoby przypisać położeniu konkretnej nanocząsteczki.
      Teraz uczeni poradzili sobie z tym problemem stosując pięć złotych nanopręcików, z których każdy ma indywidualnie kontrolowaną długość i orientację. Pręciki ułożone są w literę H - dwa znajdują się na dole, dwa na górze, a pomiędzy nimi, prostopadle do reszty, ułożono piąty pręcik. Dzięki takiemu ułożeniu pomiędzy pojedynczym pręcikiem, a dwoma równoległymi powstaje silne sprzężenie, które pozwala na uzyskanie ostrego obrazu i umożliwia wykonanie pomiarów. Dodatkową zaletą takiej struktury jest duża swoboda ruchu wszystkich pręcików, co umożliwia dokładne badania zmian w strukturze badanych systemów.
       
      http://www.youtube.com/watch?v=dgdWrMaAxd4
    • By KopalniaWiedzy.pl
      Teoria de Broglie-Bohma, czyli alternatywne podejście do zagadnień mechaniki kwantowej, została właśnie wsparta ciekawym eksperymentem, którego wyniki mogą mieć znaczne implikacje w wielu zastosowaniach - od symulowania złożonych molekuł po tunelowanie kwantowe.
      Z tradycyjnego punktu widzenia fotony są jednocześnie falą i cząsteczką. Te ostatnie objawiają się jako gęstość prawdopodobieństwa, a z zasady nieoznaczoności Heisenberga wiemy, że nie można jednocześnie zmierzyć położenia cząsteczki i jej prędkości.
      Teraz uczeni z USA, Australii, Kanady i Francji poinformowali, że znaleźli sposób jak zmierzyć to, co dotychczas wydawało się niemożliwe. Udało im się mianowicie zebrać kompletną informację o prędkości i pozycji fotonów. Zasada nieoznaczoności Heisenberga wciąż obowiązuje, jednak nie jest już tak restrykcyjna jak poprzednio.
      Uczeni użyli mocno chłodzonej kwantowej kropki z arsenku indowo-galowego do uwalniania pojedynczych fotonów. Potwierdzono, co wykazano już w 1909 roku, że pomiędzy wysyłanymi w ten sposób pojedynczymi fotonami wciąż zachodzi interferencja i na fotodetektorze otrzymujemy taki obraz, jakbyśmy mieli do czynienia z całą falą cząstek.
      Oczywiście próba prostego zmierzenia drogi każdego fotonu pomiędzy kropką a fotodetektorem skazana byłaby na niepowodzenie z powodu zasady nieoznaczoności Heisenberga.
      Aby dokładnie zbadać drogę fotonów bez niszczenia całego systemu Sacha Kocsis, Boris Braverman z University of Toronto oraz Sylvain Ravets z Université Paris-Sud Campus Polytechnique postawili na ich drodze cienki kryształ zawierający kalcyt. Ma on tę szczególną właściwość, że potrafi odwrócić polaryzację fotonu w zależności od tego, z którego kierunku foton się pojawił. Tymczasem soczewki fotodetektora zostały ustawione tak, by ich ogniskowa skupiała się na różnych miejscach w przestrzeni. Dzięki temu uczeni wiedzieli, jak daleko znajduje się foton, zatem mogli poznać jego pozycję, a polaryzacja fotonu dostarczała im informacje o oryginalnym kierunku, w którym wędrował, co w przybliżeniu pozwoliło poznać prędkość.
      Jeśli taki eksperyment powtórzymy tysiące razy, badając wszelkie możliwe punkty w przestrzeni pomiędzy kropką kwantową a fotodetektorem, oraz wszelkie możliwe polaryzacje fotonu w każdym z tych punktów, to odpowiednia analiza statystyczna pozwoli na poznanie dokładniej drogi, którą poruszał się foton.
      Znajomość trajektorii cząsteczek to jedno z głównych założeń teorii de Broglie-Bohma. Generalnie, jak zauważa profesor Aephraim Steinberg  z University of Toronto teoria de Broglie-Bohma daje te same wyniki co mechanika kwantowa. Z kolei profesor Howard Wiseman z australijskiego Griffith University dodaje, że alternatywne rozumienie zachodzących zjawisk jest ważne, gdyż bohmiańska interpretacja ma również znaczenie praktyczne. Daje nam bowiem narzędzia do opracowania sposobów badań dynamiki molekularnej, które jest bardzo trudno przeprowadzić bez pewnych przybliżeń.
      Dla profesora matematyki Sheldona Goldsteina z Rutgers University najważniejszym aspektem tego eksperymentu jest przybliżenie teorii de Broglie-Bohma do naukowego mainstreamu, gdzie nie cieszy się ona zbytnim poważaniem. Teoria ta nie stoi w sprzeczności z żadnymi eksperymentalnie potwierdzonymi faktami. Stoi natomiast w sprzeczności z pewnymi przewidywaniami - mówi Goldstein.
      A Wiseman dodaje: Teoria ta twierdzi, że takie trajektorie istnieją. Dla niektórych naukowców eksperyment ten będzie zatem jedynie miłym potwierdzeniem teorii, której nie odrzucają. Dla wielu jednak jego wyniki będą szokujące.
×
×
  • Create New...