Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'uszkodzenie DNA' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 5 wyników

  1. Wyciąg z pestek winogron zabija komórki raka kolczystokomórkowego skóry głowy i szyi. I to zarówno w hodowlach komórkowych, jak i w żywych mysich organizmach. Zdrowe komórki pozostają nieuszkodzone (Carcinogenesis). Dr Rajesh Agarwal z University of Colorado wyjaśnia, że zaobserwowany efekt zależy w dużej mierze od zdolności zdrowych komórek do "przeczekiwania" uszkodzeń. Komórki rakowe szybko rosną. Muszą. Kiedy w jakichś warunkach im się to nie udaje, umierają. Wszystko opiera się na tym, że w komórkach rakowych szwankuje wiele szlaków. Są więc bardzo podatne na zniszczenie, jeśli zaatakuje się je od tej właśnie strony. W zdrowych komórkach nic takiego się nie dzieje. Wyciąg z pestek winogron zwiększa stężenie reaktywnych form tlenu, które uszkadzają DNA komórek nowotworowych, i jednocześnie blokuje szlaki ich naprawy. Jak wykazali Amerykanie, ekstrakt obniża poziom białek biorących udział w mechanizmie naprawy uszkodzonego DNA: BRCA1 i RAD51. Mając na uwadze fakt, że u myszy nie zaobserwowano żadnych efektów ubocznych zastosowania wyciągu z pestek winogron, akademicy mają nadzieję, że już wkrótce rozpoczną się testy kliniczne. Coś, co można uzyskać w czasie produkcji zwykłego oleju, z pewnością przydałoby się w terapii pacjentów, u których nie sprawdziło się leczenie wdrożone w pierwszym rzucie.
  2. W sezonie letnim oparzenia słoneczne nie należą, niestety, do rzadkości. Najlepiej ich, oczywiście, unikać, ale gdy już spieczemy się jak raki, trzeba jakoś ulżyć uszkodzonej skórze. Naukowcy z Uniwersytetu Stanowego Ohio ujawniają, że być może już w niedalekiej przyszłości w sukurs przyjdą nam w takiej sytuacji leki lub balsamy, które dzięki jednemu elektronowi naprawią uszkodzone przez promieniowanie ultrafioletowe DNA (Proceedings of the National Academy of Sciences). Amerykanie prowadzili badania nad fotoliazą – enzymem występującym w komórkach roślinnych i u niektórych zwierząt. U ssaków, w tym u człowieka, nie stwierdzono białek o aktywności fotoliaz. Enzymy te wiążą komplementarne nici DNA i rozbijają dimery pirymidynowe (połączenie pary tymin lub cytozyn tej samej nici DNA), które tworzą się pod wpływem promieniowania UV. Podczas eksperymentów okazało się, że "na przekór" wcześniejszym wyliczeniom teoretycznym, fotoliazy nie naprawiają obu zniekształconych miejsc naraz. Wszystko odbywa się w dwóch etapach, podczas których enzym przepuszcza przez cząsteczkę DNA elektron. Porusza się on w zamkniętym obwodzie, łączącym po okręgu oba zmienione dimerowo punkty. Prof. Dongping Zhong dostrzegł to, ponieważ posłużył się laserem i wywołał coś na kształt efektu stroboskopowego. Pierwsze kowalencyjne wiązanie rozpadło się w ciągu kilku bilionowych części sekundy, a następne po 90 bilionowych sekundy opóźnienia. Przyczyny należy szukać właśnie w wystrzelonym przez enzym elektronie, który stanowi źródło energii potrzebnej do rozbijania. Cząstka potrzebuje bowiem czasu i energii, by przebyć drogę od jednego punktu napraw do drugiego. Elektron porusza się po zewnętrznej krawędzi uszkodzonego fragmentu DNA. Zespół z Ohio prowadził badania na dimerach cyklobutanowych, które przyjmują kształt wystającego z boku nici pierścienia. Enzym musi wstrzelić elektron w uszkodzone DNA, ale jak? Są dwie możliwości. Elektron może przeskoczyć z jednej strony pierścienia na drugą, co znacznie skraca dystans, jednak zamiast tego cząstka wybiera trasę "krajoznawczą". Odkryliśmy, że podczas podróży napotyka na inną cząstkę, która działa jak rozbieg przyspieszający ruch elektronów i w ten sposób dłuższa droga jest pokonywana w krótszym czasie. Do wystrzelenia elektronu fotoliaza wykorzystuje pochłoniętą energię świetlną (preferowana jest niebieska i fioletowa część pasma). Akademicy mają nadzieję, że sztuczne fotoliazy zostaną wykorzystane np. w balsamach po opalaniu. Pomogłyby one w likwidowaniu dimerów pirymidynowych, które nie dopuszczają do prawidłowej replikacji DNA i prowadzą do mutacji genetycznych i nowotworów skóry.
  3. Łączna długość nici DNA w komórkach człowieka wynosi niemal dwa metry, a mimo to komórkowa maszyneria enzymatyczna doskonale radzi sobie z wykrywaniem i naprawą uszkodzeń genomu. Jak to możliwe? Badacze z University of North Texas twierdzą, że poznali możliwe wyjaśnienie tego fenomenu. Zdaniem zespołu dr. Arkady'ego Krokhina, swoją niezwykłą zdolność do kontroli własnego stanu DNA zawdzięcza... właściwościom elektrycznym. Mówiąc ściślej, z przedstawionych przez nich danych wynika, że odcinki DNA zwane intronami, które należą do genów, lecz nie przenoszą informacji wykorzystanej np. podczas syntezy białka, wykazują stosunkowo niski poziom przewodnictwa elektrycznego. Dla porównania, eksony, czyli sekwencje kodujące, są stosunkowo dobrymi przewodnikami. Swoją zdolność do przewodzenia ładunków elektrycznych eksony zawdzięczają budowie chemicznej, umożliwiającej powstanie puli tzw. elektronów zdelokalizowanych. Oznacza to, że nie są one ściśle związane z żadnym atomem i posiadają znaczny zakres ruchliwości. Z fizycznego punktu widzenia ich ruch wzdłuż nici DNA nie różni się praktycznie od przepływu elektronów w typowym przewodzie elektrycznym. Badacze z Teksasu spekulują, że odkryte zjawisko może być wykorzystywane przez wewnątrzkomórkowe systemy wykrywania uszkodzeń DNA. Jeżeli bowiem charakterystyka przepływu ładunków w cząsteczce ulega zaburzeniu, może to oznaczać, że doszło w nim do uszkodzenia materiału genetycznego. Po wstępnym "namierzeniu" wady na miejsce mogłyby być przywoływane enzymy naprawcze, które zajęłyby się odbudową nici DNA. Dokonane odkrycie może także wyjaśniać, dlaczego jedne miejsca w genomie są bardziej podane na mutacje (czyli utrwalone uszkodzenia DNA przekazywane komórkom potomnym) od innych. Zdaniem dr. Krokhina może się tak dziać, ponieważ "pomiar" przewodnictwa elektrycznego niektórych odcinków nici DNA może być utrudniony. Trzeba przyznać, że hipoteza zaproponowana przez naukowców z Teksasu jest dość odważna. Nietrudno jednak zauważyć, że jest ona także bardzo spójna, zaś powtarzalność różnic pomiędzy eksonami i intronami rzeczywiście dają do myślenia. Ewentualne potwierdzenie lub odrzucenie teorii o "elektrycznym" wykrywaniu uszkodzeń DNA będzie jednak wymagało dalszych badań.
  4. Choć komórki, w których doszło do uszkodzenia DNA, uruchamiają procesy regeneracji i naprawy materiału genetycznego już po kilku minutach od wykrycia defektu, informują o swoim uszkodzeniu dopiero po kilkudziesięciu godzinach - odkryli badacze z Buck Institute for Age Research. System wzajemnego informowania się przez komórki o uszkodzeniach ich DNA jest kluczowy dla bezpieczeństwa organizmu i chroni go m.in. przed nowotworami. Okazuje się jednak, że proces ten, uznawany dotychczas za bardzo szybki, działa w rzeczywistości znacznie wolniej, niż sądzono. Gdy w typowej komórce dojdzie do uszkodzenia, jej pierwszą reakcją, uruchamianą już po kilku minutach, jest aktywacja systemów naprawy DNA. Jeżeli defekt nie zostanie szybko skorygowany, komórka uruchamia jeden z dwóch mechanizmów: blokadę podziałów komórkowych lub apoptozę, czyli "komórkowe samobójstwo". Jeżeli komórka przeżyje, a mimo to nie zostanie przywrócone jej prawidłowe działanie, do otoczenia wysyłane są sygnały odpowiedzialne za aktywację stanu zapalnego i reakcji układu immunlogicznego. Właśnie tej "ostatniej linii obrony" postanowili przyjrzeć się badacze z instytutu Buck, kierowani przez dr Judith Campisi. Wraz z dr. Francisem Rodierem oraz innymi członkami zespołu dr Campisi hodowała ludzkie komórki, a następnie celowo wywoływała w nich uszkodzenia DNA. Jak wykazano w eksperymencie, sytuacja taka powoduje niemal natychmiastową aktywację systemów naprawy DNA, lecz wyrzut substancji zapalnych z uszkodzonych komórek następuje dopiero po 24, a nawet po 48 godzinach. Myślimy, że komórka daje sobie samej czas na naprawę własnego DNA zanim zaalarmuje układ odpornościowy o problemie, interpretuje wyniki doświadczenia dr Rodier. Badacz dodaje przy tym, że "podniesienie alarmu" zachodzi na zupełnie nowej, nieznanej drodze. Może to oznaczać, że ewolucja wyposażyła ludzkie komórki w zdublowany mechanizm ochrony przed niepożądanymi zjawiskami, takimi jak nowotwory czy rozległe mutacje, a to - przynajmniej teoretycznie - podwaja szansę na wykrycie zagrożenia i jego eliminację. Z dokonanego odkrycia można wysnuć dwa niemal przeciwstawne wnioski. Z jednej strony możemy się cieszyć z istnienia dodatkowego mechanizmu pozwalającego np. na szybkie wykrycie i zniszczenie komórek nowotworowych. Niestety, oznacza to jednocześnie, że jeżeli komórka przetrwa atak układu odpornościowego, będzie wytwarzała znaczne ilości substancji prozapalnych, co może z kolei prowadzić do... rozwoju nowotworów. W praktyce oznacza to tylko jedno: uzyskanie cennej odpowiedzi spowodowało powstanie lawiny nowych pytań, na które będzie można odpowiedzieć tylko dzięki kolejnej serii badań.
  5. Mężczyźni spędzający wiele godzin na zajęciach związanych z używaniem telefonu komórkowego zmniejszają swoje szanse na zostanie ojcami (podobnie jak panowie przyjmujący niektóre z najpopularniejszych leków antydepresyjnych). Badania amerykańskie wykazały bowiem, że mężczyźni, którzy używają swoich komórek przez ponad 4 godziny dziennie, ryzykują uszkodzeniem spermy. Próbki pobrane od panów odwiedzających kliniki leczenia niepłodności ujawniły, że im więcej dany mężczyzna korzysta z telefonu komórkowego, tym bardziej spada liczba, jakość oraz zdolność do poruszania się plemników. Gdy mężczyzna rozmawiał przez ponad 4 godziny na dobę, odnotowywano 30-procentowy spadek żywotności i ruchliwości plemników, w porównaniu do mężczyzn, którzy w ogóle nie używali komórek. Ashok Agarwal, który zaprezentował wyniki na nowoorleańskiej konferencji poświęconej medycynie reprodukcyjnej, podkreślał, że badanie jego zespołu nie wykazało, iż telefony komórkowe negatywnie wpływają na męską płodność, lecz uczulił innych naukowców na taką możliwość. Ludzie korzystają z telefonów komórkowych, nie zastanawiając się nad prawdopodobnymi konsekwencjami... Nadal wymaga to udowodnienia, ale takie zachowanie może mieć olbrzymi wpływ [na płodność — przyp. red.]. Inne studium wykazało, że niektóre z najlepiej sprzedających się antydepresantów niekorzystnie oddziałują na męską płodność. U dwóch pacjentów badanych w Cornell Medical Centre w Nowym Jorku liczba plemników w ejakulacie spadła niemal do zera i powróciła do normalnego stanu po odstawieniu leków antydepresyjnych. Mężczyzn przebadano po upływie 2 lat od terapii. W późniejszym okresie opisano przypadki 12 następnych mężczyzn, u których wystąpiły podobne objawy (spadek liczby plemników był jednak mniej drastyczny). W zeszłym roku naukowcy wykazali, że poddawanie myszy działaniu fal radiowych o częstotliwości podobnej do tej emitowanej przez telefony komórkowe przez 12 godzin dziennie w okresie 1 tygodnia powodowało uszkodzenie DNA spermy.
×
×
  • Dodaj nową pozycję...