Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'siRNA' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 7 wyników

  1. Składnik zielonej herbaty - flawonoid galusan epigallokatechiny (EGCG) - pomaga terapeutycznemu krótkiemu interferującemu RNA (ang. small interfering RNA, siRNA) wniknąć do komórki. Naukowcy wspominają o dużym potencjale terapeutycznym siRNA, który może wyciszać ekspresję genów związanych z chorobami. Problemem jest jednak, by siRNA dostał się do komórki i mógł zacząć wykonywać swoje zadanie. Ponieważ siRNA są stosunkowo duże i mają ujemny ładunek, niełatwo im pokonać błonę komórkową. Poza tym są one podatne na rozkład przez enzymy - rybonukleazy (RN-azy). By jakoś rozwiązać te problemy, naukowcy próbowali powlekać siRNA różnymi polimerami. Niewiele to jednak pomogło; te o niskiej masie molekularnej nie były toksyczne, ale nie potrafiły dostarczyć siRNA do cytozolu, zaś te o dużej masie dawały radę, ale były silnie cytotoksyczne. Zespół Yiyuna Chenga zaczął się więc zastanawiać nad wykorzystaniem EGCG, który silnie wiąże się z RNA. Gdyby jeszcze dodać polimer o niskiej masie molekularnej, można by uzyskać nanocząstki, które bezpiecznie dostarczą siRNA do komórek. Podczas eksperymentów EGCG i siRNA samoorganizowały się w ujemnie naładowany rdzeń, który naukowcy powlekali skorupą z polimeru o niskiej masie molekularnej. W hodowlach komórkowych nanocząstki skutecznie wyłączały ekspresję kilku wybranych genów, a to znaczy, że potrafiły pokonać barierę błony komórkowej. Później autorzy publikacji z pisma ACS Central Science testowali swoje nanocząstki na myszach, u których stan zapalny (uraz) jelita wywołano za pomocą soli sodowej siarczanu dekstranu (ang. dextran sodium sulfate, DSS). W tym przypadku miały one obrać na cel enzym prozapalny. Okazało się, że zastosowanie nanocząstek doprowadziło do zelżenia/wyeliminowania objawów, w tym utraty wagi czy skrócenia jelita grubego. Cheng i inni uważają, że zaobserwowane zjawiska to nie tylko skutek wyciszenia genów przez siRNA, ale także wynik przeciwutleniającej i przeciwzapalnej aktywności galusanu epigallokatechiny. « powrót do artykułu
  2. Już w poprzedniej dekadzie interesowano się zastosowaniem interferencji RNA (wyciszania lub wyłączania ekspresji genu przez dwuniciowy RNA) w leczeniu nowotworów. Cały czas problemem pozostawało jednak dostarczanie RNA o sekwencji zbliżonej do wyłączanego wadliwego genu. Naukowcy z MIT-u zaproponowali ostatnio rozwiązanie - zbitki mikrogąbek z długich łańcuchów kwasu nukleinowego. Skąd problem z dostarczaniem? Małe interferujące RNA (siRNA, od ang. small interfering RNA), które niszczą mRNA, są szybko rozkładane przez enzymy zwalczające wirusy RNA. Paula Hammond i jej zespół wpadli na pomysł, by RNA pakować w tak gęste mikrosfery, że są one w stanie wytrzymać ataki enzymów aż do momentu dotarcia do celu. Nowy system wyłącza geny równie skutecznie jak wcześniejsze metody, ale przy znacznie zmniejszonej dawce cząstek. Podczas eksperymentów Amerykanie wyłączali za pomocą interferencji RNA gen odpowiadający za świecenie komórek nowotworowych u myszy. Udawało im się to za pomocą zaledwie 1/1000 cząstek potrzebnych przy innych metodach. Jak tłumaczy Hammond, interferencję RNA można wykorzystać przy wszystkich chorobach związanych z nieprawidłowo funkcjonującymi genami, nie tylko w nowotworach. Wcześniej siRNA wprowadzano do nanocząstek z lipidów i materiałów nieorganicznych, np. złota. Naukowcy odnosili większe i mniejsze sukcesy, ale nadal nie udawało się wypełnić sfer większą liczbą cząsteczek RNA, bo krótkich łańcuchów nie można ciasno "ubić". Ekipa prof. Hammond zdecydowała się więc na wykorzystanie jednej długiej nici, którą łatwo zmieścić w niewielkiej sferze. Długoniciowe cząsteczki RNA składały się z powtarzalnych sekwencji nukleotydów. Dodatkowo segmenty te pooddzielano krótkimi fragmentami, rozpoznawanymi przez enzym Dicer, który ma za zadanie ciąć RNA właśnie w tych miejscach. Podczas syntezy RNA tworzy arkusze, które potem samorzutnie zwijają się w bardzo zbite gąbkopodobne sfery. W sferze o średnicy 2 mikronów mieści się do 500 tys. kopii tej samej sekwencji RNA. Potem sfery umieszcza się na dodatnio naładowanym polimerze, co prowadzi do dalszego ich ściskania. Średnica wynosi wtedy zaledwie 200 nanometrów, a to niewątpliwie ułatwia dostanie się do komórki. W komórce Dicer tnie długą nić na serię 21-nukleotydowych nici.
  3. Jak doprowadzić krótkie nici RNA do określonych komórek? Naukowcy z Georgia Institute of Technology i Emory University opisali właśnie metodę enkapsulacji fragmentów kwasu rybonukleinowego w nanocząstkach tioketonowych. Dzięki temu można było doustnie dostarczyć materiał genetyczny do odpowiednich rejonów przewodu pokarmowego zwierząt z nieswoistymi zapaleniami jelit. Nanocząstki tioketonowe, które zaprojektowaliśmy, są stabilne zarówno w kwasach, jak i zasadach, a ulegają rozkładowi wyłącznie w obecności reaktywnych form tlenu [ang. reactive oxygen species, ROS]. Te ostatnie występują w obrębie objętej stanem zapalnym tkanki układu pokarmowego – tłumaczy prof. Niren Murthy. Nanocząstki tioketonowe osłaniają cząsteczki krótkiego interferującego RNA (ang. short interfering RNA - siRNA) przed trudnymi warunkami panującymi w jelicie i kierują je bezpośrednio w miejsca rozwoju stanu zapalnego. Jak wyjaśniają Amerykanie, takie zlokalizowane podejście jest konieczne, ponieważ wstrzyknięte układowo siRNA mogą powodować poważne skutki uboczne. Jak napisano w artykule zamieszczonym w internetowym wydaniu pisma Nature Materials, nanocząstki uzyskuje się z nowego polimeru PPADT; jego nazwa chemiczna to poli-(1,4-fenylenoaceton dimetyleno tioketon). Dzięki wysiłkom inżynieryjnym mają one średnicę ok. 600 nm. W czasie eksperymentów zespół posłużył się mysim modelem wrzodziejącego zapalenia jelita grubego (łac. colitis ulcerosa). Jest to przewlekły proces zapalny błony śluzowej odbytu lub jelita grubego o nieustalonej etiologii. Do jego głównych objawów należą długotrwałe biegunki i/lub zaparcia oraz bóle brzucha, które niekiedy prowadzą do zagrażających życiu powikłań. W ramach studium akademicy podawali myszom doustnie nanocząstki z siRNA hamującym cytokinę zwaną czynnikiem martwicy nowotworu alfa (TNF-α). Próbki tkanek z okrężnicy leczonej siRNA wykazały obecność nienaruszonego nabłonka jelita i dobrze wyodrębnionych wypukleń oraz fałd półksiężycowatych. Co ważne, zmniejszył się też stan zapalny. Ponieważ wrzodziejące zapalenie jelita grubego ogranicza się do okrężnicy, wyniki potwierdzają, że wypełnione siRNA nanocząstki tioketonowe pozostają stabilne w wolnych od stanu zapalnego okolicach przewodu pokarmowego, obierając na cel zmienione chorobowo tkanki – przekonuje główny autor studium Scott Wilson. Nanocząstki tioketonowe mają odpowiednie właściwości chemiczne i fizyczne, by poradzić sobie z przeszkodami w postaci płynów jelitowych, tutejszej błony śluzowej czy błon komórkowych. Obecnie badacze pracują nad zwiększeniem wskaźnika degradacji nanocząstek oraz ich reaktywności z ROS. W planach jest także analiza biodystrybucji nanocząstek podczas ich podróży przez organizm. Będziemy nadal sprawdzać toksyczność polimeru, ale podczas studium odkryliśmy, że nanocząstki tioketonowe z siRNA mają profil cytotoksyczności podobny do nanocząstek z zaaprobowanego przez Agencję ds. Żywności i Leków kopolimeru kwasu DL-polimlekowego i kwasu glikolowego (PLGA) – dodaje Murthy.
  4. Komórki macierzyste mają być przełomem w medycynie, ale na razie problemem jest ich wytwarzanie. Istnieją sposoby na przemianę zwykłych komórek w macierzyste, ale modyfikowanie ich przy pomocy DNA stwarza ryzyko nowotworów. Być może lepsze okaże się RNA. Komórki macierzyste to komórki niedorosłe, które mogą potencjalnie przekształcić się w dowolny rodzaj tkanki. Opanowanie tego procesu pozwoliłoby na leczenie takich chorób jak alzheimer, cukrzyca, choroba Parkinsona, może nawet na regenerację uszkodzonych nerwów. Niestety, trudno znaleźć naturalne komórki macierzyste w wystarczających ilościach. Ok kilku lat znana jest metoda pozwalająca na przekształcenie dorosłych komórek skóry w komórki macierzyste. Dokonuje się tego poprzez wstrzykiwanie do wnętrza komórki odpowiednich genów, nośnikami fragmentów DNA, które nadpisuje genom komórki, są wirusy. Proces przeprogramowania oparty na DNA jest jednak ryzykowny, nieudany może grozić uszkodzeniem zapisu genetycznego i przemianę komórki w nowotworową. Istnieją też inne metody, naukowcy z Uniwersytetu Kyoto dokonali reprogramowania komórki przy pomocy jedynie czterech genów, udało się też z sukcesem przekształcić komórkę dostarczając bezpośrednio do jej wnętrza zamiast genów - gotowe białka. Wszystkie te technologie wymagają jednak długiego czasu i większych nakładów. Są zbyt drogie i zbyt mało wydajne, dlatego powszechnie wykorzystuje się wciąż reprogramowanie przy pomocy DNA. Potencjalnie istnieje inny sposób, pożądane geny można wstrzykiwać przy pomocy RNA. Naukowcy z Massachusetts Institute of Technology: Mehmet Fatih Yanik i Matthew Angel spróbowali wykorzystać messenger RNA (mRNA, RNA matrycowe) - cząstki, które przenoszą fragmenty DNA z informacjami wewnątrz komórki. Metoda ta napotkała jednak na poważną przeszkodę: wewnątrzkomórkowy system immunologiczny, który broni komórki przed infekcją wirusową. Obce fragmenty RNA są przez niego usuwane, jeśli zaś pojawia się ich zbyt wiele, komórka ulega apoptozie (śmierci samobójczej), aby uniknąć rozprzestrzeniania się infekcji. Yanik i Angel znaleźli na to sposób. Wiedząc, że niektóre wirusy potrafią omijać system obronny komórki, podpatrzyli i wykorzystali mechanizm, którym posługują się wirusy zapalenia wątroby typu C. Dzięki wstrzyknięciu małego interferującego RNA (siRNA) dało im się zablokować odpowiedź immunologiczną komórki i można było na dalszym etapie wprowadzić mRNA przekształcające komórkę z dorosłej w macierzystą. Tym samym Naukowcy MIT są pierwszymi, którym udało się dostarczenie odpowiednich genów przy pomocy mRNA. Technika ta jest bardzo obiecująca, ale przez badaczami jeszcze wiele pracy. Nie mogą na razie oficjalnie stwierdzić, że udało im się nową metodą przekształcić komórkę z dorosłej w macierzystą. Aby dowieść sukcesu, muszą skutecznie wyhodować w laboratorium większą ilość komórek i utrzymać je przez dłuższy czas. Jeśli technika ma mieć szanse na komercyjne zastosowanie, muszą jeszcze potwierdzić zdolność przekształcania się tak stworzonych komórek macierzystych w wybrane, konkretne tkanki. Świat medyczny jednak bez wątpienia czekać będzie z niecierpliwością na wyniki dalszych prac Yanika i Angela.
  5. Stworzenie skutecznej szczepionki przeciwko HIV pozostaje od ponad 20 lat jednym z największych wyzwań medycyny. Wiele wskazuje na to, że odkrycie dokonane przez badaczy z University of California może pozwolić na osiągnięcie przynajmniej częściowej odporności na tego wirusa... bez konieczności wykonywania szczepienia. Nowa metoda, opracowana przez zespół Saki Shimizu, polega na zastosowaniu shRNA - niewielkich cząsteczek RNA, które po wewnątrzkomórkowej obróbce przez enzymy są w stanie blokować aktywność genów o ściśle określonej sekwencji DNA. Dzięki zaprojektowaniu odpowiednich shRNA badaczom udało się uzyskać zdolność komórek do hamowania syntezy białka CCR5, pełniącego funkcję tzw. koreceptora HIV, czyli cząsteczki znacząco ułatwiającej zakażenie komórek człowieka przez ten patogen. Co ważne, obecność tej molekuły nie jest konieczna dla prawidłowego funkcjonowania człowieka, co oznacza, że jej eliminacja nie powinna wiązać się z niekorzystnymi efektami ubocznymi. Skuteczność pomysłu przetestowano na myszach wykazujących głębokie upośledzenie własnego układu odpornościowego, do organizmów których przeniesiono kluczowe elementy układu odpornościowego człowieka. Tak przygotowanym zwierzętom podano ludzkie prekursory komórek krwiotwórczych zakażone wirusem wywołującym stałą ekspresję shRNA blokującego wytwarzanie CCR5. Efektem eksperymentu było wytworzenie kompletnego układu krwionośnego, w którym wszystkie komórki, które powinny syntetyzować CCR5, były tej cząsteczki pozbawione. Przygotowane w opisany sposób komórki poddano następnie testom wrażliwości na zakażenie najpospolitszym szczepem HIV. Jak się okazało, zablokowanie aktywności CCR5 wystarczyło, by komórki pozbawione tej molekuły stały się oporne na infekcję. Kolejnym zadaniem, które stoi teraz przed zespołem pani Shimizu, będzie najprawdopodobniej opracowanie terapii, która pozwoli na uruchomienie produkcji ochronnego shRNA w dorosłym organizmie, który urodził się bez zdolności do syntezy tej cząsteczki. Z pewnością jest to ambitny cel, lecz jego osiągnięcie byłoby niewyobrażalnym wręcz postępem dla nowoczesnej medycyny.
  6. Naukowcom z Uniwersytetu Massachusetts udało się wyciszyć ekspresję genu za pomocą krótkich cząsteczek RNA, zwanych krótkimi interferującymi RNA, podanych drogą doustną. To przełom w badaniach nad tą obiecującą techniką regulacji aktywności genów. Obiektem eksperymentu był gen MAP4K4, którego produkt należy do istotnych regulatorów fizjologii komórek odpornościowych zwanych makrofagami. Celem doświadczenia było zablokowanie aktywności badanej sekwencji DNA w tych komórkach przy pomocy cząsteczek krótkiego interferującego RNA (ang. short interfering RNA - siRNA). Zależne od siRNA zjawisko zwane interferencją RNA zostało odkryte niedawno, lecz jest powszechnie wykorzystywane jako efektywny sposób selektywnego wyciszania aktywności ściśle określonych genów. Dotychczas jego stosowanie bywało problematyczne, ponieważ nie istniały proste i wydajne metody podawania siRNA. Na szczęście, jak się wydaje, udało się wykonać ważny krok naprzód. Swój eksperyment naukowcy przeprowadzili na myszach. Aby dostarczyć siRNA do ich organizmów, wykorzystano substancję zwaną β-1,3-D-glukanem. Ten naturalny składnik ściany komórkowej drożdży łączy w sobie dwie pożądane cechy: nie pobudza gwałtownej odpowiedzi immunologicznej, lecz jest szybko pochłaniany przez makrofagi. Naukowcy użyli drobin tego związku, by wbudować do makrofagów RNA wyciszające MAP4K4. Jak wykazali naukowcy, podanie kompleksów glukanu i siRNA prowadziło do ich wydajnego wychwytu przez makrofagi rezydujące w ścianach przewodu pokarmowego. Kolejnym etapem było uwolnienie siRNA, prowadzące do jego aktywacji. Ostatecznym efektem eksperymentu było wyciszenie genu MAP4K4 i wyciszenie stanu zapalnego. Niestety, nowa metoda działa wyłącznie na makrofagi - to one pocħłaniają siRNA i wykorzystują je, lecz nie są w stanie przekazać go innym komórkom. Pocieszająca jest jednak niezwykle wysoka wydajność interferencji RNA przeprowadzonej nową metodą. Do wyciszenia badanego genu wystarczała bowiem ilość siRNA od kilkunastu aż do pięciuset razy mniejsza, niż przy podaniu dożylnym.
  7. Niewielkie cząsteczki dwuniciowego RNA, zwane siRNA, zrobiły w ostatnich latach niezwykłą karierę, a nawet przyniosły jej odkrywcom Nagrodę Nobla w roku 2006. Okazuje się jednak, że powodzenie niektórych terapii wynika ze zjawisk zupełnie innych, niż dotychczas przypuszczano, a podczas wykonywania wielu eksperymentów popełniano podstawowe błędy. siRNA to cząsteczki zdolne do wybiórczego blokowania genów o sekwencji nukleotydów (jednostek wchodzących w skład zarówno DNA, jak i RNA) identycznej z ich własną. Z tego względu są uważane za niezwykle atrakcyjny cel terapii takich chorób, jak nowotwory, choroby immunologiczne czy AIDS. Okazuje się jednak, że powodzenie wielu eksperymentów może wynikać nie z wyciszającego ekspresję genów działania siRNA, lecz z ogólnej, nieswoistej odpowiedzi organizmu na obecność obcych molekuł. Do odkrycia doszło podczas analizy dotychczasowych badań wykorzystujących opisywaną technikę. Prowadzona przez Marjorie Robbins grupa naukowców pracujących dla kanadyjskiej firmy Protiva Biotherapeutics zaobserwowała, że zadziwiająco nieliczne spośród publikowanych badań uwzględniły adekwatne testowanie lub kontrolowanie potencjalnych efektów wywołanej przez siRNA stymulacji immunologicznej. Logiczną konsekwencją odkrycia było przeprowadzenie własnych eksperymentów mających na celu określenie, jak bardzo istotne jest to zaniechanie. W swoim badaniu przeprowadzonym z wykorzystaniem myszy specjaliści z Protiva Biotherapeutics użyli cząsteczek siRNA o różnych sekwencjach w celu porównania ich zdolności do zwalczenia infekcji wirusem grypy oraz do wywołania reakcji organizmu gryzonia na ich obecność. Wyniki eksperymentu pokazują jednoznacznie, że wiele spośród testowanych molekuł wywoływało skuteczną odpowiedź immunologiczną i pokonanie infekcji nawet wtedy, gdy sekwencja terapeutycznej cząsteczki nie miała wiele wspólnego z informacją genetyczną wirusa. Oznacza to, że rzeczywistą przyczyną wyleczenia zwierząt była ogólna mobilizacja sił obronnych organizmu, nie zaś wybiórcza walka z patogenem. Pomimo oczywistych błędów popełnianych przez licznych naukowców, specjaliści zajmujący się terapią genową są optymistami. Jak tłumaczy pracujący dla Szkoły medycznej Uniwersytetu Pennsylvania dr James M. Wilson, siRNA ma niesamowity potencjał jako narzędzie badawcze, lecz jego rozwój w warunkch klinicznych jest wciąż na wczesnym etapie. Badanie wykonane przez panią Robbins i współpracowników wskazuje bardzo istotną kwestię związaną z efektami ubocznymi, które należy uwzględnić podczas ustalania i oceny strategii opartych o siRNA.
×
×
  • Dodaj nową pozycję...