Znajdź zawartość
Wyświetlanie wyników dla tagów 'membrana' .
Znaleziono 10 wyników
-
Błona wytworzona dzięki pomocy bakterii zabija bakterie z wody
KopalniaWiedzy.pl dodał temat w dziale Technologia
Z myślą o ludziach, którzy nie mają dostępu do czystej wody pitnej, inżynierowie z Uniwersytetu Waszyngtona w St. Louis stworzyli membranę, która oczyszcza wodę i zapobiega porastaniu bakteriami i innymi szkodliwymi organizmami (ang. biofouling). W błonie wykorzystano tlenek grafenu i bakteryjną nanocelulozę. Jeśli technologię opisaną na łamach pisma Environmental Science & Technology uda się przeskalować, znajdzie ona zastosowanie w wielu krajach rozwijających się, które zmagają się z niedoborem czystej wody. Biofouling jest zjawiskiem, które trudno całkowicie wyeliminować. Prof. Srikanth Singamaneni i Young-Shin Jun pracowali nad tym niemal 5 lat. Wcześniej uzyskali inne błony zawierające złote nanogwiazdy, ale zależało im na stworzeniu wersji bazującej na tańszych materiałach. Produkcja nowej membrany zaczyna się od "dokarmiania" bakterii Gluconacetobacter hansenii cukrową substancją. Dzięki temu, przebywając w wodzie, mogą one potem tworzyć nanowłókna celulozy. Podczas wzrostu nanocelulozy dodawane są płatki tlenku grafenu (GO). Gdy GO jest już wbudowany, kompozyt poddaje się działaniu roztworu zasady, który zabija bakterie. Podczas tego procesu grupy tlenowe GO są eliminowane i powstaje zredukowany GO. Gdy zespół oświetlił membranę promieniami słonecznymi, płatki zredukowanego GO natychmiast wytworzyły ciepło, które rozproszyło się po wodzie i nanocelulozie. Jeśli chcesz oczyścić wodę z mikroorganizmów, zredukowany tlenek grafenu może pochłaniać światło słoneczne, podgrzewać błonę i zabijać bakterie - wyjaśnia Singamaneni. Podczas testów Amerykanie wystawili błonę na działanie pałeczek okrężnicy (Escherichia coli), a później oświetlili jej powierzchnię. Po zaledwie 3-min naświetlaniu, E. coli zginęły. Akademicy ustalili, że błona szybko podgrzewała się do temperatury ponad 70°C. Gdy eksperyment powtórzono z membraną z bakteryjnej nanocelulozy bez zredukowanego GO, E. coli pozostawały żywe. To przypomina drukowanie 3D z pomocą mikroorganizmów. Podczas wzrostu bakteryjnej nanocelulozy można dodawać, co się chce. Przyglądaliśmy się takim membranom w różnych warunkach pH i pozostawały one bardziej stabilne niż błony uzyskane na drodze filtracji próżniowej czy powlekania obrotowego tlenkiem grafenu - opowiada Jun. Singamaneni i Jun proponują, by w przyszłości zaprezentowane przez nich filtry były wyposażane w nanogeneratory, które będą wykorzystywać energię mechaniczną przepływu cieczy do uzyskiwania światła i ciepła. Wg nich, mogłoby to obniżyć ogólne koszty. « powrót do artykułu -
Tanie i proste przechowywanie energii elektrycznej
KopalniaWiedzy.pl dodał temat w dziale Technologia
Naukowcy z singapurskiego Uniwersytetu Narodowego pracują nad nową membraną, która jest w stanie przechowywać znacznie więcej energii niż nowoczesne baterie litowo-jonowe. Zespół doktora Xie Xian Ninga bada membranę wykonaną z polimeru bazującego na polistyrenie. Membranę zamyka się pomiędzy grafitowymi płytkami. Jej pojemność wynosi 0,2 farada na każdy centymetr kwadratowy. Standardowy kondensator przechowuje obecnie 1 mikrofarad na centymetr kwadratowy. Dzięki pracom Singapurczyków mogą znacząco spaść ceny urządzeń do przechowywania energii. Obecnie urządzenie z płynnym elektrolitem kosztuje około 7 dolarów za każdy farad pojemności. Nowe membrany pozwalają przechować farad za 62 centy. Innymi słowy, bateria wykorzystująca singapurską membranę za cenę 1 dolara przechowa 10-20 watogodzin. Baterie litowo-jonowe za taką samą kwotę przechowują 2,5 watogodziny. Membrana charakteryzuje się też olbrzymią wytrzymałością. Jest ona w stanie przetrwać 5000-6000 cykli ładowania/rozładowywania. Ładuje się ponadto szybciej niż standardowa bateria. W porównaniu z akumulatorami i superkondensatorami te membrany umożliwiają budowanie tanich urządzeń o bardzo prostej architekturze. Co więcej, wydajność membran przewyższa akumulatory i superkondensatory - powiedział doktor Xie. -
Na Uniwersytecie Harvarda powstało pierwsze cienkowarstwowe ogniwo paliwowe wyprodukowane w skali makro. Po raz pierwszy udało się skalować ogniwo paliwowe z tlenkiem stałym (SOFC) proporcjonalnie zwiększając moc urządzenia. „Przełomowe znaczenie ma tutaj fakt, że uzyskaliśmy gęstość energetyczną porównywalną do tego, co można uzyskać za pomocą miniaturowych membran, ale tutaj mamy membrany setki razy większe, a to pokazuje, że technologia ta jest skalowalna" - mówi profesor Shriram Ramanathan. W ogniwach z tlenkiem stałym wykorzystywane są obecnie bardzo cienkie membrany. Właśnie dzięki ich niewielkiej grubości jony mogą przechodzić przez membranę, a cały proces odbywa się w stosunkowo niskiej temperaturze. To z kolei pozwala na zmniejszenie rozmiarów ogniwa i wykorzystywanie mniejszej ilości rzadkich materiałów. Problem jednak w tym, że dotychczas odpowiednio cienkie membrany udawało się zaimplementować w bardzo małych SOFC. Do praktycznego zastosowania tego typu ogniw musiałyby być one około 50-krotnie większe. „Jeśli wykonasz w tej skali tradycyjną membranę bez jakiejś struktury podpierającej to nic z tego nie wyjdzie - membrana się porwie. Można takie membrany stworzyć w laboratorium, ale nie można jej nawet ruszyć, natychmiast się drze" - mówi współautor badań, Bo-Kuai Lai. Teraz naukowcy stworzyli membranę, którą wyposażyli w metalową kratownicę. Szczegółowe badania wykazały, że najlepiej sprawdzają się kształty okrągły oraz plaster miodu. Już wcześniej inne zespoły naukowe pracowały nad podobnymi rozwiązaniami, żadnemu jednak nie udało się go zaimplementować bez jednoczesnego spadku gęstości energetycznej. Tymczasem makroogniwa z Harvarda charakteryzują się gęstością rzędu 155 miliwatów na centymetr kwadratowy (przy temperaturze 510 stopni Celsjusza), czyli porównywalną z mikroogniwami. Biorąc pod uwagę fakt, że są większe, mogą zapewnić wystarczającą ilość energii dla urządzeń przenośnych.
-
- ogniwo paliwowe z tlenkiem stałym
- SOFC
-
(i 1 więcej)
Oznaczone tagami:
-
Badacze z Laboratorium Energetyki Laserowej Univeristy of Rochester opracowali błonę, która nie przepuszcza gazu, gdy na jej powierzchnię rzutowane jest światło ultrafioletowe, i uwalnia go, kiedy barwa, czyli długość fali, ulega zmianie (w tym przypadku na promieniowanie fioletowe). Wynalazcami pierwszej kontrolowanej w ten sposób membrany są student Eric Glowacki i jego opiekun naukowy Kenneth Marshall. Błonę wykonano z kawałka plastiku, w którym wydrążono otwory. Znajdują się w nich ciekłe kryształy i barwnik. Kiedy na błonę pada fioletowe światło, cząsteczki barwnika prostują się, a kryształy ustawiają się w rzędzie, co zapewnia bezproblemowy przepływ gazu. Po zmianie światła na ultrafioletowe molekuły barwnika wyginają się, przybierając kształt bumerangów czy, jak kto woli, bananów. Kryształy rozchodzą się w przypadkowych kierunkach, blokując gazowi przejście. Glowacki tłumaczy, że kontrolowanie przepuszczalności błony za pomocą światła, a nie temperatury czy elektryczności – dwóch często używanych obecnie metod – jest dużo wygodniejsze. Po pierwsze, można to robić zdalnie. Po drugie, kolor światła padającego na membranę daje się zmieniać bardzo precyzyjnie i właściwie natychmiast. Rozgrzewanie lub chłodzenie wymagają za to czasu, a powtarzanie tych procesów prowadzi niekiedy do uszkodzenia błony. Po trzecie, światło nie doprowadza do zapłonu, co ma niebagatelne znaczenie przy pracy z węglowodorami i innymi palnymi gazami. Po czwarte wreszcie, ilość energii świetnej potrzebnej do "przełączenia" membrany jest minimalna. Choć z pozoru prosta, nowatorska błona powstaje w kilku etapach. Na początku okrągły kawałek plastiku jest bombardowany strumieniem neutronów. W wyniku tego powstają równej wielkości otworki o średnicy ok. 1/100 mm. Następnie plastik zanurza się w roztworze ciekłych kryształów i barwnika, który wypełnia dziurki dzięki zjawiskom kapilarnym. Na końcu membranę umieszcza się w wirówce, by usunąć z powierzchni nadmiar kryształów. Amerykanie mają nadzieję, że w przyszłości ich wynalazek przyda się do dostarczania leków czy kontrolowania procesów przemysłowych. Na razie udało mu się zadebiutować na branżowej konferencji.
-
Jednym z podstawowych problemów związanych z prowadzeniem szczepień w krajach Trzeciego Świata jest fakt, że szczepionki bardzo źle przechowują się w wysokich temperaturach. Skuteczna dystrybucja i przechowywanie szczepionek w Afryce, Azji czy Ameryce Południowej są zatem niezwykle trudne. Niewykluczone, że naukowcy z firmy Nova Bio-Pharma Technologies oraz University of Oxford właśnie rozwiązali ten problem. Wystarczyło bowiem wymieszać szczepionki wirusowe z cukrem i pozwolić im wyschnąć na prostym filtrze, by można było przechowywać je przez całe miesiące nawet w tropikach. Obecnie szczepionki oparte na wirusach trzeba przechowywać w temperaturze 4-8 stopni Celsjusza. USA czy Wielka Brytania wydają rocznie około 200 milionów dolarów na utrzymanie "zimnego łańcucha" szczepionek. To, zdaniem Światowej Organizacji Zdrowia, podnosi cenę jednej dawki o 14-20 centów. Utworzenie "zimnego łańcucha" w krajach Trzeciego Świata jest niemożliwe, chociażby z tego powodu, że wielu ośrodkom zdrowia brakuje nie tylko lodówek, ale nawet energii elektrycznej. Stąd też bardzo ważne jest opracowanie metod przechowywania szczepionek w wysokich temperaturach. Nova Bio-Pharma Technologies już wcześniej udowodniła, że mieszanie z cukrem i suszenie pozwala na przechowywanie różnych typów szczepionek oraz lekarstw zawierających proteiny. Tym razem po raz pierwszy wykazano, że technika jest skuteczna również w przypadku szczepionek z żywymi wirusami. By szczepionka była efektywna, wirusy muszą żyć. Są one jednak wrażliwe na wysokie temperatury. Okazało się, że wysuszenie ich w roztworze cukru powoduje, iż są w stanie przetrwać. To może być wielki przełom - stwierdziła Stephanie James, dyrektor finansowanego przez Fundację Billa i Melindy Gatesów programu Grand Challenges in Global Health, który finansował opisywane badania. W ich ramach dwie szczepionki z żywymi wirusami wymieszano z sacharozą i trehalozą, a następnie umieszczono na membranie z włókna szklanego i wysuszono w temperaturze pokojowej w komorze o niskiej wilgotności. To spowodowało, że cukry utworzyły wokół włókien niekrystaliczna powłokę, która unieruchomiła wirusy i uniemożliwiła im kontakt ze światem zewnętrznym. Najważniejsze okazało się użycie odpowiedniej membrany, gdyż pozwoliło to na pozbycie się wody w relatywnie niskiej temperaturze. Naukowcom sporo czasu zajęło dobranie metodą prób i błędów odpowiedniego stężenia cukrów i budowy filtra. Żeby ponownie użyć szczepionki należy przemyć membranę w soli fizjologicznej, pozbywając się w ten sposób cukru. Testy wykazały, że dzięki takiej technice szczepionkę można przechowywać przez 6 miesięcy w temperaturze 45 stopni Celsjusza bez żadnej szkody dla niej. Z kolei w temperaturze 37 stopni można ją przechować przez rok kosztem niewielkiego spadku efektywności.
-
- Nova Bio-Pharma Technologies
- Oxford University
-
(i 4 więcej)
Oznaczone tagami:
-
Na University of Illinois w Urbana-Champaign powstało najmniejsze znane nam ogniwo paliwowe. To kostka o wymiarach 3x3x1 milimetr. Być może w przyszłości miniaturowe ogniwa zastąpią baterie. Wielką zaletą ogniw jest znacznie większa gęstość energetyczna. Na tą samą jednostkę własnej powierzchni są w stanie zapewnić 10-krotnie więcej energii niż tradycyjna bateria. Jednak łatwiej jest zminiaturyzować baterię niż ogniwo z jego pompami i elektroniką kontrolną. Problem stanowi też fakt, iż małe pompy zużywają więcej energii niż jej dostarczają. Saeed Moghaddam z University of Illinois znalazł inny sposób produkcji ogniw. Mówi, że niepraktycznym byłoby miniaturyzowanie pompy, czujnika ciśnienia i całej elektroniki, a gdyby nawet jakimś sposobem udało się to zrobić, to całość zapewne zużywałaby więcej energii, niż byłaby w stanie wyprodukować. Dlatego też Moghaddam wraz z zespołem opracowali ogniwo paliwowe, które samo nie zużywa energii. Składa się ono z czterech elementów. Pojemnik z wodą znajduje się na górze i jest oddzielony cienką membraną od umieszczonego poniżej pojemnika z wodorkiem metalicznym. Pod nim z kolei znajduje się zespół elektrod membranowych (Membrane Electrode Assembly, MEA). W membranie znajdują się niewielkie otwory, które umożliwiają parze wodnej przeniknięcie do pojemnika z wodorkiem. Tam zachodzi reakcja, w wyniku której powstaje wodór. W komorze zwiększa się ciśnienie i wypycha w górę membranę, blokując dopływ pary wodnej. Wodór reaguje też z elektrodami, produkując energię elektryczną. Z czasem wodoru jest coraz mniej, ciśnienie się zmniejsza i para wodna znowu może się przemieszczać, podtrzymując reakcję. Dzięki temu, że ogniwo jest tak małe, to napięcie powierzchniowe, a nie grawitacja, kontroluje przepływ wody. Pierwsze miniaturowe ogniwa zapewniały napięcie rzędu 0,7 wolta przy natężeniu rzędu 0,1 miliampera i pracowały przez 30 godzin. Szybko je jednak ulepszano i już teraz udaje się osiągnąć 0,7 wolta oraz 1 miliamper. Steve Arscott z uniwersytetu w Lille, który specjalizuje się w mikroogniwach paliwowych nie jest pewien, czy ogniwa Amerykanów będą praktycznie użyteczne. Arscott mówi, że sam wyprodukował mikroogniowo, które korzysta nie z wodorku, ale z metanolu. Jego ogniwo jest trzykrotnie większe, jednak ma 10-krotnie większą gęstość energetyczną od ogniwa z Illinois. Jednak Arscott przestrzega przed bezpośrednim porównywaniem takich ogniw. Zauważa, że propozycja Amerykanów ma olbrzymią zaletę - ich ogniwo nie posiada zewnętrznego źródła paliwa, a większość ogniw takim źródłem się posługuje, co zmniejsza ich gęstość energetyczną. Ponadto ogniwo Moghaddama charakteryzuje się dobrą, bo wynoszącą 100 watów na litr, gęstością energetyczną.
- 4 odpowiedzi
-
- Membrane Electrode Assembly
- MEA
-
(i 5 więcej)
Oznaczone tagami:
-
Zespół profesor Pauli Hammond z MIT-u pracuje nad membraną, która o 50% zwiększy wydajność metanolowych ogniw paliwowych. Metanol to obiecujące paliwo dla ogniw, jednak jego zastosowanie jest obecnie ograniczone m.in. przez niedoskonałości membran. Metanolowe ogniwo paliwowe działa w ten sposób, że po jego jednej stronie zachodzi reakcja metanolu i wody, wskutek której powstają m.in. protony i wolne elektrony. Protony przechodzą przez membranę i łączą się z tlenem z powietrza, tworząc wodę. Elektrony zaś nie mogą przedostać się przez membranę, wędrują do obwodów elektrycznych zapewniając zasilanie. Im więcej protonów przechodzi przez membranę, tym więcej mocy zapewnia ogniwo. Problem w tym, że przez polimerowe membrany, przez które dobrze przechodzą protony, przecieka też metanol, przez co zmniejsza się wydajność ogniwa. Przeciekaniu można oczywiście zapobiec, stosując na przykład grubsze membrany, ale jednocześnie blokują one więcej protonów, zmniejszając wydajność ogniwa. W piśmie Advanced Materials profesor Hammond opisała niedrogi proces produkcji membrany, która dobrze przewodzi elektrony, a jednocześnie zapobiega zbytniemu przeciekaniu metanolu. W efekcie wydajność ogniwa może wzrosnąć o ponad 50 procent. Pomysł naukowców z MIT-u polega na zmodyfikowaniu komercyjne dostępnej membrany z produkowanego przez DuPonta polimeru Nafion. Membrana jest umieszczana na krzemowym dysku, który powoli się obraca. Nad dyskiem umieszczono cztery dysze. Najpierw z jednej z nich wydobywa się roztwór pozytywnie naładowanego polimeru, po kilku sekundach dysza przestaje pracować, a dysk jest zraszany wodą. Następnie uruchamiana jest dysza z roztworem negatywnie naładowanego polimeru, a później znowu woda. W ten sposób na membranie powstaje dwuwarstwowa błona o grubości od 3 do 50 nanometrów. W Advanced Materials opisano zmodyfikowaną membranę, na którą nałożono 3 dwuwarstwowe błony. Dzięki połączeniu pozytywnie i negatywnie naładowanych polimerów osiągnięto wysokie przewodnictwo, a jednocześnie zredukowano przeciekanie metanolu. Nieco podobnego podejścia próbowały już inne zespoły. Ich pomysł polegał na użyciu dwóch polimerów, jednak taka membrana była niestabilna, gdyż polimery o różnych strukturach mają tendencje do oddzielania się. My połączyliśmy dwa różne materiały, ale w skali nano, dzięki czemu połączenie było trwałe - mówi Hammond. Uczeni testują swoją membranę w różnych warunkach ciśnienia, wilgotności i temperatury. Przyznają, że nie osiągnęli jeszcze tak dobrego przewodnictwa, jakie zapewnia sam Nafion, ale są już bardzo blisko. Jeśli im się uda, metanolowe ogniwa paliwowe powinny łatwiej się upowszechniać.
-
Naukowcom udało się stworzyć najcieńszy na świecie balon. Jego powłoka składa się z pojedynczej warstwy atomów. Grafenowy balon powstał przez przypadek. Badaliśmy niewielkie grafenowe trampoliny i przypadkowo stworzyliśmy powłokę z grafenu, która otaczała wolną przestrzeń. Zaczęliśmy się jej przyglądać i okazało się, że wewnątrz został uwięziony gaz - mówi Paul McEuen, fizyk z Cornell University. Kolejne badania wykazały zadziwiającą właściwość balonu - jego ścianki są całkowicie nieprzepuszczalne nawet dla najmniejszych cząstek gazu. To niezwykłe, że coś o grubości zaledwie jednego atomu może tworzyć nieprzepuszczalną barierę. Z jednej strony możemy mieć gaz, a z drugiej próżnię lub płyn. A pomiędzy nimi będzie ściana grubości jednego atomu i nic przez nią nie przeniknie - dodaje naukowiec. Trudno wyobrazić sobie wszystkie możliwości zastosowania nowej bariery. Już teraz wiadomo, że może odegrać ona olbrzymią rolę w nauce i medycynie. McEuen mówi np. o tworzeniu "akwariów" z molekułami. Z jednej strony błony można umieścić instrumenty badawcze znajdujące się w próżni lub otoczone powietrzem, a z drugiej - DNA lub białka w roztworach. Dzięki temu, że błona ma grubość zaledwie 1 atomu instrument badawczy będzie mógł zbliżyć się do badanej molekuły na niewielką odległość. Membrana pozwoli też np. na stworzenie wyjątkowo wrażliwych czujników czy filtrów. Gdy mamy nieprzepuszczalną membranę, możemy w niej wycinać otwory o dowolnej średnicy i decydować w ten sposób, co może się przez nią przedostać. Szczegóły badań nad najcieńszym balonem świata ukażą się w piśmie Nano Letters.
-
Jednym ze sposobów na rozwiązanie problemu dostępu do wody pitnej jest odsalanie wód morskich. Na całym świecie działa ponad 7000 instalacji przystosowujących taką wodę do picia. Problem jednak w tym, że membrany oddzielające sól od wody ulegają zniszczeniu w obecności chloru. W wodzie morskiej znajdują się liczne mikroorganizmy, które mogą zatkać membranę, czyniąc ją bezużyteczną. Dlatego też najpierw do wody dodaje się chloru, by pozbyć się tych organizmów. Następnie chlor jest szybko usuwany, a woda przedostaje się do membran, które oddzielają sól. Później ponownie dodawany jest chlor i woda trafia do sieci wodociągowej. Naukowcy z University of Texas i Virginia Polytechnic Institute opracowali membrany, które są odporne na działanie chloru. Ich zastosowanie pozwoli na uproszczenie całego procesu pozyskiwania wody pitnej z mórz, dzięki czemu stanie się on tańszy i łatwiej dostępny. Nowa membrana wykonana została z polisiarczku, tworzywa sztucznego zawierającego siarkę. Poprzednie próby wykorzystania tego materiału spaliły na panewce, gdyż polisiarczek jest silnie hydrofobiczny, więc woda ma trudności z przeniknięciem. Obecnie amerykańskim naukowcom udało się podczas procesu polimeryzacji dodać do materiału dwie grupy sulfonowe, dzięki którym uzyskali trwały polimer odporny na działanie chloru. Eksperymenty wykazały, że w przypadku wody o niskim i średnim zasoleniu nowy materiał oddziela sól równie skutecznie, jak wiele komercyjnie używanych membran. Nieco gorzej sprawuje się w wodach o dużym zasoleniu. Jest też znacznie bardziej wytrzymały. Po 35-godzinnej ekspozycji na skoncentrowany roztwór chloru w nowych membranach zaszły niewielkie zmiany. Tymczasem obecnie dostępne na rynku membrany były w tym czasie całkowicie rozkładane przez chlor. Uczeni eksperymentują teraz z różnym składem swojego polimeru, chcąc uzyskać jeszcze bardziej wydajne i wytrzymałe membrany. Eric Hoek, profesor z Uniwersytetu Kalifornijskiego w Los Angeles, ktory specjalizuje się w badaniach nad membranami do odsalania, jest zachwycony pracami swoich kolegów. Mówi, że ich materiał wykazuje zadziwiającą odporność na działanie chloru. Jednak, dodaje, w tej chwili nie jest jeszcze na tyle wydajny, by można było zastąpić nim wszystkie komercyjnie wykorzystywane membrany.
-
Wiatr, słońce, pływy morskie – to tylko niektóre z dostępnych człowiekowi tzw. odnawialnych źródeł energii. Do grupy tej może dołączyć między innymi... energia deszczu. Francuscy naukowcy opracowali bowiem sposób na wytwarzanie energii elektrycznej z drgań wywoływanych przez padające krople. Niestety, jak twierdzi kierujący pracami Romain Guigon, energia ta jest nieporównywalnie mniejsza od tej pozyskiwanej z wymienionych na początku źródeł. Wspomniany generator bazuje na tworzywie PVDF (polifluorku winylidenu), które odznacza się właściwościami piezoelektrycznymi. Membrana z tego tworzywa, mierząca 25 nanometrów grubości, wpada wibracje, jeśli padają na nią krople wody (w eksperymentach mierzyły one od 1 do 5 mm). Znajdujące się w membranie elektrody zbierają ładunki elektryczne wytwarzane przez wibracje. Podczas najsilniejszych opadów uzyskano w ten sposób moc rzędu 12 miliwatów, natomiast minimalny poziom energii dostarczanej w sposób ciągły wynosił 1 mikrowat. Obliczenia wykazały, że wytwarzanego w ten sposób prądu może starczyć co najwyżej dla niewielkich, energooszczędnych urządzeń, takich jak bezprzewodowe czujniki służące do monitorowania stanu środowiska. Choć to niewiele, "deszczowy" generator ma swoje zalety: można go stosować tam, gdzie zawodzą ogniwa słoneczne, a w połączeniu z innymi źródłami "czystej" energii gwarantuje dość prądu, by wspomniane czujniki mogły ciągle pracować. Wspomnianą technologię można stosować nie tylko w plenerze – równie odpowiednie dla niej warunki panują np. w dużych systemach klimatyzacyjnych, gdzie para wodna skrapla się, wywołując niewielki sztuczny deszcz.
- 1 odpowiedź