Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'ciekłe kryształy'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Profesor Piotr Kaszyński i jego student Bryan Ringstrand z Vanderbilt University stworzyli nową klasę ciekłych kryształów o wyjątkowych właściwościach elektrycznych. Kryształy mogą posłużyć do udoskonalenia wyświetlaczy LCD. Stworzyliśmy ciekłe kryształy o niezwykłym dipolu, dwukrotnie większym niż mają obecnie istniejące kryształy - poinformował Kaszyński. Ważnym współczynnikiem dla pracy ciekłych kryształów jest minimalne napięcie koniecznym do wymuszenia na nich działania. Im większy dipol, tym mniejsze można przyłożyć napięcie minimalne. Ponadto, przy tym samym napięciu kryształy o większym dipolu przełączają się szybciej. Kryształy wyglądają bardzo obiecująco, jednak profesor Kaszynski studzi przedwczesną radość. Nasze kryształy [...] muszą przejść testy wytrzymałości, żywotności i tym podobne, zanim zostaną użyte w komercyjnych produktach - mówi uczony. Odkrycie Kaszyńskiego i Ringstranda ma znaczenie nie tylko komercyjne ale i naukowe. Od 1888 roku uczeni znaleźli już ponad 100 000 związków chemicznych, które mogą występować w formie ciekłych kryształów. Jednak mimo wieloletnich badań wciąż nie wszystko o nich wiadomo. Uczeni nie wiedzą na przykład, jaki wpływ ma dipol kryształu na temperaturę, w której staje się on zwykłym płynem. Dominująca teoria mówi, że im silniejszy dipol tym wyższa temperatura przejścia w stan płynny. Kaszyński i Ringstrand, dzięki sposobowi, w jaki syntetyzowali swoje kryształy, mogli sprawdzić tę teorię. Utworzyli pary ciekłych kryształów o takiej samej geometrii ale różnych dipolach i mierzyli ich temperatury przejścia w zwykły płyn. Odkryli, że większy wpływ na temperaturę mają subtelne różnice w strukturze kryształów niż siła ich dipoli. Nowe kryształy są wyjątkowe także i pod tym względem, że zawierają amfijony czyli jony obojniacze. Kaszyński samego początku pracy na Vanderbilt University, a więc od 1993 roku, próbował stworzyć amfijonowe ciekłe kryształy. Mógł tego dokonać dopiero teraz, korzystając z odkrytego w 2002 roku przez niemieckich uczonych procesu chemicznego, który to umożliwił.
  2. Badacze z Laboratorium Energetyki Laserowej Univeristy of Rochester opracowali błonę, która nie przepuszcza gazu, gdy na jej powierzchnię rzutowane jest światło ultrafioletowe, i uwalnia go, kiedy barwa, czyli długość fali, ulega zmianie (w tym przypadku na promieniowanie fioletowe). Wynalazcami pierwszej kontrolowanej w ten sposób membrany są student Eric Glowacki i jego opiekun naukowy Kenneth Marshall. Błonę wykonano z kawałka plastiku, w którym wydrążono otwory. Znajdują się w nich ciekłe kryształy i barwnik. Kiedy na błonę pada fioletowe światło, cząsteczki barwnika prostują się, a kryształy ustawiają się w rzędzie, co zapewnia bezproblemowy przepływ gazu. Po zmianie światła na ultrafioletowe molekuły barwnika wyginają się, przybierając kształt bumerangów czy, jak kto woli, bananów. Kryształy rozchodzą się w przypadkowych kierunkach, blokując gazowi przejście. Glowacki tłumaczy, że kontrolowanie przepuszczalności błony za pomocą światła, a nie temperatury czy elektryczności – dwóch często używanych obecnie metod – jest dużo wygodniejsze. Po pierwsze, można to robić zdalnie. Po drugie, kolor światła padającego na membranę daje się zmieniać bardzo precyzyjnie i właściwie natychmiast. Rozgrzewanie lub chłodzenie wymagają za to czasu, a powtarzanie tych procesów prowadzi niekiedy do uszkodzenia błony. Po trzecie, światło nie doprowadza do zapłonu, co ma niebagatelne znaczenie przy pracy z węglowodorami i innymi palnymi gazami. Po czwarte wreszcie, ilość energii świetnej potrzebnej do "przełączenia" membrany jest minimalna. Choć z pozoru prosta, nowatorska błona powstaje w kilku etapach. Na początku okrągły kawałek plastiku jest bombardowany strumieniem neutronów. W wyniku tego powstają równej wielkości otworki o średnicy ok. 1/100 mm. Następnie plastik zanurza się w roztworze ciekłych kryształów i barwnika, który wypełnia dziurki dzięki zjawiskom kapilarnym. Na końcu membranę umieszcza się w wirówce, by usunąć z powierzchni nadmiar kryształów. Amerykanie mają nadzieję, że w przyszłości ich wynalazek przyda się do dostarczania leków czy kontrolowania procesów przemysłowych. Na razie udało mu się zadebiutować na branżowej konferencji.
  3. Miniaturyzacja komputerów i komputeryzacja kolejnych urządzeń codziennego użytku wywiera silną presję na nowe technologie przechowywania danych. Twarde dyski są już zbyt wolne, zbyt duże i zbyt prądożerne. Urządzenia zasilane bateriami wołają o coś lżejszego, mniejszego i bardziej oszczędnego. Na tym polu jednak wciąż istnieje tylko jedna alternatywa dla HDD - dość drogie pamięci flash. Wszystkie inne pomysły, jak pamięci magnetodydamiczne, nie wyszły poza sferę projektów. I właśnie pojawił się jeszcze jeden potencjalny konkurent - ciekłe kryształy. Ciekłe kryształy przeszły niesamowitą technologiczną ewolucję. Jeszcze całkiem niedawno kojarzyły się z wyświetlaczami w kalkulatorach o nędznej jakości. Stopniowo zyskały wyższą rozdzielczość, kolor i szybkość reakcji. Rozwinęły się na tyle, że wyparły niemal całkowicie, wydawałoby się nieśmiertelną, technologię kineskopową. Poza wyświetlaczami jednak ten zdumiewający stan skupienia materii nie zrobił dotąd kariery. Ciekłe kryształy to stan pośredni między płynnym a krystalicznym stanem skupienia. W takim stanie, zwanym mezofazą, substancja potrafi płynąć, mimo zachowania wewnętrznej krystalicznej struktury. Próby ich wykorzystania do zapisywania danych były już w przeszłości podejmowane, ale bez powodzenia. Problemem nie do pokonania była stabilność takich jednostek pamięciowych. Nie ma co się dziwić, ustawianie cząsteczek odbywa się zwykle w dość toporny sposób, przy pomocy napięcia, chemicznie lub nawet mechanicznie, przez pocieranie. Przełom osiągnęli inżynierowie z Tokijskiego Instytutu Technologicznego pod kierunkiem Hideo Takezoe. Bazując na kryształach podobnych do tych stosowanych powszechnie w wyświetlaczach, potrafią oni zmieniać fazę poszczególnych pręcików - molekuł przy pomocy lasera lub pola elektrycznego. Laserem można w ten sposób - w przeciwieństwie do na przykład płyt CD/DVD, gdzie dane zapisywane są tylko na powierzchni - zapisywać dane w całej objętości. Jest to nic innego, jak dawno oczekiwane pamięci holograficzne. Uzyskana technologia pozwala uzyskać bistabilny stan kryształków, niepotrzebne jest zatem zasilanie dla podtrzymania zawartości. Pierwsze próby z prototypowym egzemplarzem pamięci dowiodły, że działa on, jak założono: pozwala na zapis, odczyt, kasowanie i ponowny zapis. Od pierwszych prób naukowych do zastosowań produkcyjnych musi minąć sporo czasu - jeśli oczywiście technologia okaże się konkurencyjna. Z doświadczenia jednak wiadomo, że postęp w tej dziedzinie jest bardzo szybki, a Japończycy potrafią pracować wyjątkowo efektywnie.
  4. Naukowcy z Instytutu Fraunhofera informują, że opracowany przez nich smar na bazie ciekłych kryształów, zmniejsza tarcie niemal do zera. Użycie takiego smaru pozwoli więc na gigantyczne oszczędności energii. Smary są powszechnie używane w dużej mierze po to, by zmniejszyć straty energii spowodowane tarciem. Spotykamy je zarówno w samochodach, maszynach przemysłowych i w turbinach wiatrowych.Podczas ich produkcji korzysta się przede wszystkim z różnego rodzaju olejów. Do pewnego stopnia redukują one tarcie, jednak mimo to wciąż powoduje ono olbrzymie straty energii. Uczeni z Fraunhofera pokładają nadzieję w smarach z ciekłych kryształów. Od smarów na bazie olejów różnią się tym, że ciekłe kryształy mają konkretną orientację. Właśnie dzięki temu tarcie zostaje zmniejszone niemal do zera. Naukowcy zbadają teraz, w jakich warunkach sprawdzają się różne kompozycje kryształów. Do testów wykorzystywany jest metalowy cylinder, który jest poruszany w lewo i prawo wewnątrz otaczającego go większego cylindra, o który się ociera. Zauważono, że przy zastosowaniu w takich warunkach konwencjonalnych smarów, siła tarcie pozostaje praktycznie taka sama. Po użyciu smarów na ciekłych kryształów zmniejszyła się ona niemal do zera. Dotychczas smarów na ciekłych kryształach nie można było stosować w łożyskach kulkowych, gdyż siły nacisku są tam bardzo duże i ciekłe kryształy się nie sprawdzają. Natomiast idealnie nadają się do łożysk ślizgowych. Naukowcy z Instytutu Fraunhofera mówią, że ich smary trafią na rynek w ciągu 3-5 lat. Nie powinny być zbyt drogie, gdyż wykorzystywane do ich produkcji ciekłe kryształy nie muszą być tak czyste, jak ciekłe kryształy używane do wytwarzania monitorów komputerowych.
×
×
  • Create New...