Znajdź zawartość
Wyświetlanie wyników dla tagów 'kompleks' .
Znaleziono 4 wyniki
-
Wydajność mięśni zależy m.in. od zdolności wykorzystania węglowodanów jako źródła energii. Ćwiczenia wpływają na nią korzystnie, a otyłość czy przewlekłe choroby wręcz przeciwnie. Naukowcy z Sanford-Burnham Medical Research Institute odkryli mechanizm, dzięki któremu można u myszy przeprogramować geny metaboliczne mięśni, wpływając na ich umiejętność zużywania cukrów. Niewykluczone, że w ten sposób będzie się w przyszłości zapobiegać bądź leczyć cukrzycę, zespół metaboliczny i otyłość. Zasadniczo te transgeniczne myszy są w stanie magazynować węglowodany i spalać je w stopniu występującym tylko u wytrenowanych sportowców - wyjaśnia dr Daniel P. Kelly. Mięśnie wyhodowanych przez Amerykanów myszy wytwarzają białko PPARβ/δ. Jest ono receptorem jądrowym, a więc czynnikiem transkrypcyjnym, który przez przyłączanie ligandów reguluje ekspresję genów metabolicznych mięśni w odpowiedzi na bodźce zewnętrzne. Wcześniejsze badania pokazały, że gryzonie z wyższym poziomem PPARβ/δ w mięśniach cechuje większa wydolność wysiłkowa. Jak napisali w artykule opublikowanym na łamach Genes & Development członkowie zespołu Kelly'ego, mięśnie zwierząt z grupy PPARβ/δ przewyższają mięśnie zwykłych zwierząt pod względem zdolności wychwytywania cukru z krwiobiegu, a także magazynowania go i wykorzystywania w formie energii. Myszy PPARβ/δ są supersprawne. W porównaniu do przeciętnych gryzoni, biegną dłużej i szybciej, a w ich mięśniach powstaje mniej kwasu mlekowego. Główną rolę w mechanizmie odkrytym przez ekipę z Sanford-Burnham Medical Research Institute odgrywają kompleksy tworzone przez 3 białka: 1) PPARβ/δ, 2) AMPK (kinazę aktywowaną 5'AMP) oraz 3) czynnik transkrypcyjny MEF2A, który pomaga w aktywowaniu miocytospecyficznych genów. Wspólnie białka włączają ekspresję genu kodującego dehydrogenazę mleczanową - enzym kierujący cukropochodne metabolity do mitochondriów, gdzie możliwe jest całkowite spalanie "surowca".
-
- PPARβ/δ
- receptor jądrowy
-
(i 10 więcej)
Oznaczone tagami:
-
Odkryto nowy element mitochondrium, który odgrywa kluczową rolę w ich funkcjonowaniu. Naukowcy wierzą, że dzięki temu lepiej zrozumieją zarówno choroby dziedziczne, jak i związane z wiekiem. Mitochondria nazywa się centrami energetycznymi komórki. Do prawidłowego funkcjonowania potrzebne są im syntetyzowane w rybosomach mitochondrialnych białka. Specjaliści z Karolinska Institutet oraz Instytutu Biologii Starzenia Maxa Plancka odkryli, że białko MTERF4 łączy się z innym białkiem NSUN4, a powstały w ten sposób kompleks kontroluje tworzenie i działanie mitochondrialnych rybosomów. U myszy pozbawionych MTERF4 nie powstawały funkcjonujące mitochondria, co prowadziło do obniżenia ilości wytwarzanej energii. Zredukowana funkcja mitochondriów występuje w wielu chorobach dziedzicznych, w ramach normalnego starzenia oraz w chorobach związanych z wiekiem. Podstawowa wiedza o tym, jak regulowane jest działanie mitochondriów, może zatem mieć olbrzymie znaczenie kliniczne – podkreśla prof. Nils Göran Larsson. Naukowcy odkryli wcześniej w mitochondriach podobne mechanizmy regulacyjne, które okazały się odgrywać pewną rolę w rozwoju cukrzycy.
-
- mitochondrium
- rybosom
- (i 9 więcej)
-
Pewne polifenole utrudniają wchłanianie żelaza w przewodzie pokarmowym, dlatego osoby z anemią powinny się ich wystrzegać (Journal of Nutrition). Polifenole są znane ze swych prozdrowotnych właściwości. Wiadomo, że zapobiegają lub opóźniają pewne typy nowotworów, wspomagają metabolizm kości i poprawiają ich gęstość, a także obniżają ryzyko chorób serca. Dotąd jednak niewiele osób myślało o tym, czy polifenole wpływają jakoś na absorpcję składników odżywczych – wyjaśnia prof. Okhee Han z Uniwersytetu Stanowego Pensylwanii. Amerykanie sprawdzali, jaki wpływ na komórki jelita będą miały wyciąg z pestek winogron oraz występujący w zielonej herbacie galusan epigallokatechiny (EGCG). Pestki czerwonych winogron zawierają oligomery i polimery katechiny, nazywane procyjanidynami lub proantocyjanidynami. Okazało się, że polifenole wiązały się z żelazem w komórkach jelit, tworząc nietransportowalne kompleksy, które nie mogły się przemieścić do krwiobiegu. Ulegały za to wydaleniu z kałem, gdy komórki te obumarły i zostały zastąpione nowymi. Niedobór żelaza jest najczęściej występującym niedoborem żywieniowym na świecie, a zwłaszcza w krajach rozwijających się, gdzie nie spożywa się za dużo mięsa. Ludzie z grup podwyższonego ryzyka rozwoju niedoboru Fe, np. kobiety w ciąży i małe dzieci, powinni mieć świadomość rodzaju konsumowanych polifenoli. Obecnie Han badała żelazo hemowe, którego źródłem są mięsa: szczególnie wołowina, ale również ryby i drób. Organizm pobiera żelazo hemowe z hemoglobiny i mioglobiny. Taka postać żelaza jest lepiej wchłaniania od występującej w roślinach formy niehemowej (tę ostatnią poddawano podobnym próbom w zeszłym roku).
-
- polifenole
- przeciwutleniacze
- (i 10 więcej)
-
Niewielka cząsteczka zwana nutliną-3a wystarczy, aby aktywować mechanizm powstrzymujący podziały komórkowe - donoszą naukowcy z Narodowego Instytutu Badań nad Rakiem (NCI - od ang. National Cancer Institute). Oznacza to, że subtancja ta ma szansę stać się bardzo skutecznym lekiem przeciwnowotworowym. Działanie nutliny-3a wynika z jej zdolności do aktywowania genu p53, odpowiedzialnego za kontrolę podziałów komórkowych. Produkt tego genu, białko zwane "strażnikiem genomu", wymusza na komórce powstrzymanie podziału w sytuacji, gdy ta zachowuje się w sposób nieprawidłowy (czyli np. nadmiernie dzieli się lub ulega mutacjom). Uruchamiany jest wtedy proces tzw. starzenia komórki (ang. senescence), w efekcie którego pozostaje ona przy życiu, lecz traci (najprawdopodobniej bezpowrotnie) zdolność do wzrostu i podziałów. Drugą możliwą drogą działania p53 jest wprowadzenie komórki na szlak apoptozy, czyli samobójczej, "altruistycznej" śmierci pojedynczej komórki dla dobra całego organizmu. Oba te procesy są wysoce pożądane w przypadku komórek nowotworowych. Aktywność genu p53 jest w komórce blokowana przez wiązanie z białkiem zwanym Mdm2, co oznacza, że występująca w wielu nowotworach nadprodukcja Mdm2 powoduje upośledzenie systemu ochrony komórki poprzez p53. Działanie związków z grupy nutlin polega na zapobieganiu (inhibicji) tworzeniu kompleksu Mdm2:p53, dzięki czemu funkcja "strażnika genomu" zostaje zachowana. Co prawda w około połowie przypadków chorób nowotworowych dochodzi do mutacji w genie dla p53, która całkowicie lub częściowo uniemożliwia syntezę prawidłowego białka, lecz w pozostałych 50 procentach przypadków do przywrócenia jego prawidłowego działania wystarczyłoby teoretycznie usunięcie czynników upośledzających jego funkcjonowanie. Właśnie w takich przypadkach nutlina-3a mogłaby znaleźć swoje zastosowanie jako lek przeciwnowotworowy. Przeprowadzone przez naukowców z NCI badania objęły dwie formy nutliny-3, oznaczone symbolami a oraz b. Udowodniono, że pierwszy ze związków wykazuje około 150-krotnie wyższą aktywność w badaniach in vitro, co przekłada się na niemal stuprocentową skuteczność trwałego blokowania podziałów komórkowych już po tygodniu inkubacji w obecności tego związku (z tego powodu dalsze badania objęły wyłącznie analizę formy a). Kolejnym etapem badań było sprawdzenie zależności między obecnością funkcjonalnego genu dla p53 w komórce a skutecznością nutliny. Zauważono, że inhibicja podziałów komórkowych zachodzi wyłącznie wtedy, gdy komórka posiada poprawną kopię genu dla "strażnika genomu". Podobnego efektu nie zaobserwowano w komórkach, w których nie była możliwa synteza prawidłowych cząsteczek tej proteiny. Dotychczas nie ustalono skuteczności nutliny-3a in vivo, czyli na żywych organizmach. Można się jednak spodziewać, że stosowne badania zostaną w niedługim czasie rozpoczęte. Jeżeli oczekiwania naukowców zostaną spełnione, związek ten ma szansę stać się istotnym elementem nowoczesnej i bezpiecznej terapii antynowotworowej.
-
- białko Mdm2
- gen p53
-
(i 5 więcej)
Oznaczone tagami: