Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'glikogen'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Mózg odgrywa kluczową rolę w regulowaniu metabolizmu glukozy. Niewykluczone więc, że w przyszłości cukrzycę będzie można leczyć preparatami obierającymi na cel ośrodkowy układ nerwowy (Journal of Clinical Investigation). Mózg jest jedynym narządem, który by przeżyć, potrzebuje ciągłych dostaw glukozy, wydaje się więc sensowne, że ma wpływ na to, ile glukozy powstaje. Tego typu funkcję mózgu opisano wcześniej u gryzoni, ale nie było wiadomo, czy wyniki badań [naukowców z College'u Medycznego Alberta Einsteina na Yeshiva University] odnoszą się także do ludzi. Mamy nadzieję, że to studium pomoże rozstrzygnąć spór - opowiada dr Meredith Hawkins. We wspomnianych badaniach na gryzoniach Amerykanie zademonstrowali, że aktywacja kanałów potasowych w podwzgórzu powoduje wysłanie sygnału do wątroby i osłabienie rozpadu glikogenu oraz uwalniania glukozy. Wyniki opublikowane przed 6 laty w piśmie Nature podważały twierdzenie, że produkcja glukozy przez wątrobę jest regulowana wyłącznie przez trzustkę. Gdy jednak naukowcy z Vanderbilt University próbowali powtórzyć badania na psach, nie uzyskali podobnych rezultatów. Stąd wątpliwości, czy rezultaty studium na gryzoniach odnoszą się do ssaków wyższych. Akademicy z College'u Alberta Einsteina zebrali grupę 10 niecierpiących na cukrzycę zdrowych osób. Podali im diazoksyd, lek aktywujący kanały potasowe w podwzgórzu. Kontrolowano wydzielanie hormonów przez trzustkę, by mieć pewność, że zmiany w produkcji glukozy są związane wyłącznie z wpływem diazoksydu na mózg. Badania krwi wykazały, że po zaadministrowaniu leku wątroba wytwarzała znacząco mniej cukru. Zespół Hawkins powtórzył eksperyment na szczurach. Wyniki były podobne. Gdy podano odpowiednio dużą dawkę diazoksydu, lek pokonywał barierę krew-mózg i wpływał na kanały potasowe podwzgórza. Amerykanie potwierdzili, że diazoksyd oddziałuje za pośrednictwem mózgu: kiedy wprowadzili do niego bloker kanałów potasowych, efekt diazoksydu zostawał całkowicie zniesiony.
  2. Choć brzmi to dość zaskakująco, to, co dzieje się w wątrobie, ma wiele wspólnego z cukrzycą. Naukowcy z University of Queensland i Uniwersytetu w Wuhan odkryli bowiem związek między rodzajem gromadzonego w wątrobie glikogenu (wielocukru zapasowego, którego cząsteczki są zbudowane z reszt glukozowych) a cukrzycą typu 2. Istnieją dwie frakcje glikogenu: mniejsze cząsteczki zwane beta oraz alfa, które tworzą się w wyniku połączenia wielu beta. Podczas badań laboratoryjnych na myszach z cukrzycą australijsko-chiński zespół zauważył, że w porównaniu do zdrowych gryzoni mają one mniej cząsteczek alfa. Mniejsza ilość frakcji alfa oznacza zaś, że organizm ma problem z płynnym regulowaniem poziomu glukozy we krwi i zapobieganiem skokom stężenia cukru. Odkrycie rzuca nowe światło na cukrzycę: sugeruje, że istnieje mechanizm molekularny zaangażowany w charakteryzujący cukrzycę brak kontroli nad poziomem cukru we krwi. Ostatnie ustalenia otwierają drogę do nowych sposobów diagnozowania oraz interwencji klinicznej - podkreśla szef projektu prof. Robert Gilbert. W przyszłości ekipa zamierza zwiększyć liczebność próby, a także przeprowadzić badanie DNA i ocenę skuteczności terapii bazującej na lekach obierających na cel wątrobę.
  3. Mleko i płatki z pełnego ziarna lepiej wpływają na regenerację organizmu po wysiłku niż napoje dla sportowców. Lynne Kammer, fizjolog z University of Texas w Austin, i zespół zbadali grupę 12 kolarzy: 8 mężczyzn i 4 kobiety. Amerykanie zastosowali schemat eksperymentu odpowiadający typowemu przebiegowi ćwiczeń: po rozgrzewce sportowcy ćwiczyli przez 2 godziny w wygodnym dla siebie tempie. To ważne, ponieważ w większości badań ochotnicy pedałują do momentu wyczerpania. Po zakończeniu ćwiczeń fizjolodzy porównywali wpływ mleka z pełnoziarnistym musli i napojów dla sportowców na uzupełnienie zasobów glikogenu – paliwa dla mięśni – oraz syntezę białek mięśni. Odkryliśmy, że w przypadku mleka z płatkami [u przeciętnej jednostki] odtwarzanie glikogenu było równie dobre jak po spożyciu napoju, a synteza białek mięśni przebiegała nawet sprawniej. Płatki i beztłuszczowe mleko są opcją tańszą od drinków dla aktywnych fizycznie. Mleko stanowi źródło łatwych do strawienia i wysokojakościowych protein, które mogą ułatwiać syntezę białek i adaptację do treningu. Naukowcy przekonują, że mleko z ziarnami to doskonałe rozwiązanie dla sportowców amatorów i osób umiarkowanie aktywnych fizycznie. Wg nich, zamiast kupować dość drogie napoje izotoniczne, lepiej udać się do kuchni i zalać płatki odrobiną chudego mleka.
  4. Czy kofeina spożywana po wysiłku pomaga zregenerować energię? Australijscy naukowcy zadali sobie to pytanie i mają dla nas dobrą wiadomość: to działa! Badacze z antypodów sprawdzali, czy podstawowy alkaloid zawarty w kawie przyśpiesza odnawianie zapasów glikogenu - złożonego węglowodanu stanowiącego rezerwę energetyczną m.in. dla mięśni. Efektywne odtworzenie odpowiedniej ilości tego związku jest kluczowe dla przygotowania mięśni do długotrwałego wysiłku. Podczas wielodniowych wyścigów, takich jak morderczy Tour de France, optymalizacja tego procesu może decydować o zwycięstwie bądź klęsce. Sportowcy uprawiający dyscypliny wytrzymałościowe często muszą szybko odtworzyć zapasy glikogenu w mięśniach pomiędzy kolejnymi sesjami treningowymi. W efekcie prowadzono wiele badań nad dietą ułatwiającą przyśpieszenie odzyskiwania energii i zwiększanie zapasów glikogenu w mięśniach, tłumaczy John Hawley z uniwersytetu RMIT w australijskiej Bundoorze, główny autor studium. Liczne wcześniejsze badania wykazały, że kofeina przyjmowana przez sportowców przed wysiłkiem lub w jego trakcie zwiększa dostępność glukozy, podstawowego paliwa dla mięśni i jednocześnie substratu do syntezy glikogenu. Jako "króliki doświadczalne" posłużyli Australijczykowi kolarze i triatloniści trenujący średnio przez 12-15 godzin w tygodniu. Podczas wieczornej części testów ochotnicy jechali na rowerach aż do zupełnego wycieńczenia, po czym pozwolono im jedynie na niewielki posiłek ubogi w węglowodany. Następnego poranka powtórzono trening, ponownie doprowadzając sportowców do wyczerpania. Dawało to pewność, że zapasy glikogenu zostały całkowicie wyczerpane. Po zakończeniu treningu uczestnicy mieli cztery godziny na regenerację. Otrzymali w tym celu złożony z batoników oraz żeli i napojów energetyzujących posiłek, zawierający 4g cukrów na kilogram masy ciała. Po zakończeniu posiłku zmierzono ilość glikogenu zgromadzonego w ich mięśniach. Gdy zawodnicy wrócili do pełni sił, eksperyment powtórzono. Tym razem podczas posiłku dodano jednak do ich napojów kofeinę w ilości 8mg na każdy kilogram masy ciała. Wyniki eksperymentu robią wrażenie: tempo odtwarzania rezerw energetycznych mięśni wzrosło aż o 60% w porównaniu do poprzedniej sesji, gdy przyjmowano same cukry. Nie ma absolutnie żadnej wątpliwości, że dodatkowa ilość glikogenu mięśniach poprawiłaby osiągi, komentuje krótko Hawley. Dodatkowe testy pokazały, że pod wpływem kofeiny we krwi ochotników wzrósł poziom glukozy oraz insuliny, ułatwiającej wykorzystanie energii przez mięśnie. Sugeruje to, że solidna kawa powinna istotnie wpływać na wydolność sportowców uprawiających praktycznie każdą dyscyplinę. Uzyskane wyniki wydają się bardzo zachęcające, lecz warto traktować je z rezerwą. Należy wziąć pod uwagę fakt, iż zawodnicy otrzymali ogromną dawkę kofeiny, odpowiadającą kilku kubkom mocnej kawy wypitym w czasie czterech godzin. Tak ogromna porcja alkaloidu mogłaby na dłuższą metę znacznie zaszkodzić, powodując m.in. bezsenność i drgawki. Jak tłumaczy Hawley, dawka, której użyliśmy, jest zbyt wysoka, by była stosowana przez sportowców. Dlatego musimy teraz wykonać krok wstecz i wykonać studium reakcji na różne dawki [kofeiny].
×
×
  • Create New...