Search the Community
Showing results for tags 'cement'.
Found 5 results
-
Cement i sadza, dwa materiały używane przez ludzkość od tysiącleci, mogą tworzyć podstawę nowoczesnych technologii. Ich odpowiednie połączenie pozwala bowiem na stworzenie... taniego systemu przechowywania energii. Wyobraźmy sobie budynek, w którego fundamentach przechowywana jest energia z umieszczonych na dachu paneli słonecznych, mówią naukowcy z MIT. To właśnie oni stworzyli nowy materiał, który w przyszłości może np. bezprzewodowo ładować samochód elektryczny poruszający się po drodze. Franz-Josef Ulm, Admin Masic, Yang-Shao Horn oraz czworo innych uczonych z MIT i Wyss Institute for Biologically Inspired Engineering, stworzyli superkondensator z cementu i sadzy, który opisali na łamach PNAS. Kondensatory to proste urządzenia złożone z dwóch przewodzących płytek zanurzonych w elektrolicie i przedzielonych membraną. Gdy przyłożymy do kondensatora napięcie, dodatnio naładowane jony z elektrolitu zgromadzą się na ujemnie naładowanej płytce, a jony o ładunku ujemnym przylgną do płytki o ładunku dodatnim. Membrana pomiędzy płytkami uniemożliwia migrację jonów, powstaje pole elektryczne pomiędzy płytkami i kondensator jest naładowany. Urządzenie jest w stanie przechowywać energię przez długi czas i bardzo szybko ją uwolnić w razie potrzeby. Superkondensator to kondesator zdolny do przechowywania wyjątkowo dużej ilości ładunków. Pojemność kondensatora zależy od całkowitej powierzchni płytek. W przypadku połączenia cementu i sadzy kluczem do sukcesu było uzyskanie niezwykle dużej powierzchni materiału przewodzącego wewnątrz betonowego bloku. Naukowcy uzyskali to łącząc sadzę, która bardzo dobrze przewodzi prąd, z mieszanką cementową i wodą. Woda, reagując z cementem, w sposób naturalny tworzy sieć kanalików. Sadza migruje przez te kanaliki, tworząc sieć w zastygniętym betonowym bloku. Ma ona strukturę fraktalną. Z większy ramion sieci wyrastają mniejsze, a z nich jeszcze mniejsze i tak dalej. W ten sposób w niewielkiej objętości powstaje sieć materiału przewodzącego o bardzo dużej powierzchni. Wypełniliśmy tym materiałem plastikowe tuby i pozostawiliśmy go do zastygnięcia na co najmniej 28 dni. Później pocięliśmy beton na fragmenty wielkości elektrod, każdą z nich zanurzyliśmy w standardowym elektrolicie (chlorku potasu) i z dwóch elektrod oddzielonych membraną składaliśmy superkondensatory, mówi profesor Ulm. Z obliczeń wynika, że betonowy blok o objętości 45 m3 wykonany z takiego materiału może przechować około 10 kWh energii. To mniej więcej tyle, ile zużywa w ciągu dnia typowe gospodarstwo domowe. Innymi słowy, domek jednorodzinny posadowiony na fundamentach o objętości 45 m3 zyskiwałby system przechowywania energii na cały dzień. To w znacznym stopniu uniezależniłoby gospodarstwo wyposażone w panele słoneczne od zewnętrznych dostawców energii. Nowy materiał mógłby potencjalnie znaleźć też zastosowanie do budowy dróg czy parkingów. Przechowywana w nim energia mogłaby służyć do bezprzewodowego ładowania samochodów elektrycznych. To jednak jeszcze bardziej odległa wizja, niż przechowywanie energii w fundamentach budynków. Olbrzymią zaletą tego systemu jest jego niezwykła skalowalność. W ten sposób można tworzyć zarówno elektrody o grubości 1 mm, jak i 1 metra. Wszystko zależy od tego, jak dużo energii chcemy przechowywać. Co więcej, stosując różne mieszanki można odpowiednio dostosowywać właściwości naszego superkondensatora. W przypadku dróg czy parkingów ładujących samochody elektryczne konieczne byłoby bardzo szybkie ładowanie i rozładowywanie. W przypadku domów proces ładowania i rozładowywania fundamentów może przebiegać znacznie wolniej. W tej chwili naukowcy skupiają się na zbudowaniu betonowego bloku zdolnego do przechowania takiej samej ilości energii, co standardowe akumulatory samochodowe. Superkondensatory nie mają możliwości przechowywania tak dużej ilości energii, co standardowe akumulatory. Mają jednak wiele innych zalet. Można je bardzo szybko ładować i rozładowywać i wytrzymują miliony cykli pracy. Ponadto, w przeciwieństwie do akumulatorów, przechowują energię nie w postaci chemicznej, a w postaci pola elektrycznego. « powrót do artykułu
- 11 replies
-
- 1
-
- superkondensator
- przechowywanie energii
-
(and 2 more)
Tagged with:
-
Obunogi z gatunku Crassicorophium bonellii wytwarzają niewrażliwą na oddziaływania słonej wody, lepką nić, za pomocą której spajają ziarna piasku na norki. Na odnóżach skorupiaka znajdują się ujścia specjalnych gruczołów. Co ciekawe, zwierzę łączy techniki produkcji cementów wąsonogów i jedwabnych nici pająków. Jak tłumaczą autorzy artykułu, który ukazał się w piśmie Naturwissenschaften, włóknisty jedwab stanowi mieszaninę glikozaminoglikanów i białek. Wydzielina 2 typów gruczołów pokonuje przewód, który rozgałęzia się na szereg mniejszych. Wszystkie uchodzą do wspólnej komory o wrzecionowatym kształcie. Wg biologów, komora stanowi przechowalnię oraz rodzaj mieszalni obu rodzajów wydzieliny. Tutaj jedwab jest mechanicznie, a może i chemicznie zmieniany, by stać się włóknisty. Profesor Fritz Vollrath z Uniwersytetu Oksfordzkiego opowiada, że budując sobie schronienie, C. bonellii zlepia nicią piasek, glony, a nawet własne odchody. Naukowcy już wcześniej wiedzieli, że lepka substancja pochodzi z odnóży, ale dopiero teraz zorientowali się, że obunogi wyciągają ją w nić w podobny sposób jak pająki. Poza tym, że nić jest wodoodporna, niewiele wiadomo o jej właściwościach. Vollrath podejrzewa, że może być równie wytrzymała i elastyczna, co nić pajęcza. Ze względu na specyficzne środowisko, w którym jest wykorzystywana, musi jednak także mieć pewne unikatowe cechy. Zrozumienie sekretów tego typu materiałów pozwoliłoby opracować kleje wykorzystywane w wodzie morskiej czy metody zapobiegania porastaniu kadłubów statków.
-
Łuski ryżu zawierają duże ilości dwutlenku krzemu (SiO2), będącego ważnym składnikiem betonu. Od kilkudziesięciu lat próbowano uzyskać ryżowy cement, lecz po spaleniu powstawał popiół w zbyt dużym stopniu zanieczyszczony węglem, by dało się go spożytkować. Z problemem poradził sobie zespół Rajana Vempatiego z ChK Group z Plano. Nad rozwiązaniem warto było popracować, gdyż przy produkcji 1 tony zwykłego cementu do atmosfery ulatywała tona dwutlenku węgla, który jest przecież gazem cieplarnianym. Na całym świecie na cementownie przypada 5% generowanego przez człowieka CO2. Amerykanie zauważyli, że podgrzewanie łusek ryżowych do temperatury 800 stopni Celsjusza w pozbawionym tlenu piecu pozwala usunąć węgiel. W ten prosty sposób otrzymuje się czysty dwutlenek krzemu. Powstaje przy tym taka ilość dwutlenku węgla, która zostaje rocznie wykorzystana przez pola ryżowe. Dodanie popiołu ryżowego powoduje, że beton staje się mocniejszy i bardziej odporny na korozję. Zespół Vempatiego przypuszcza, że można by uzyskać doskonałe rezultaty, zastępując nim do 20% cementu zużywanego przy budowie drapaczy chmur, mostów i innych obiektów powstających w pobliżu wody. Obecnie Teksańczycy przygotowują się do testów, które pozwolą dopracować nową metodę. Jeśli wszystko pójdzie po ich myśli, powstanie dużo większy piec, wytwarzający do 15 tys. ton ryżowego popiołu rocznie. Na technologii z pewnością skorzystają kraje rozwijające się, których gospodarka bazuje na ryżu, w tym Chiny czy Indie. Nawet przy stawce 500 dol. za tonę jest to wielomiliardowa gałąź przemysłu – podsumowuje Vempati.
- 6 replies
-
- dwutlenek krzemu
- beton
-
(and 6 more)
Tagged with:
-
Płyty kompozytowe z kurzych piór mają, według profesora Menandro Acdy z Uniwersytetu Filipińskiego w Los Baños, zrewolucjonizować azjatyckie budownictwo. Po pierwsze, nie zjedzą ich termity, po drugie – dzięki nim zostaną zagospodarowane tony niepotrzebnych piór. Naukowiec z College'u Leśnictwa i Zasobów Naturalnych wyjaśnia, że płyty produkowano by ze skompresowanego cementu i kurzych piór. Zastąpiłyby one stosowane do tej pory płyty wiórowe, stanowiące smaczny kąsek dla rzesz głodnych owadów. Poza niejadalnością dla termitów, mają one jeszcze kilka niezwykle przydatnych cech, np. palą się gorzej od kompozytów cementu i włókien drzewnych. Acda sugeruje, że płyty jego pomysłu nadają się do konstruowania podłóg, boazerii, sufitów oraz izolacji. Z oczywistych względów nie zastąpią podstawowych elementów konstrukcyjnych, czyli ścian nośnych czy filarów. Co roku przemysł drobiarski Filipin zanieczyszcza środowisko 2,4 mln ton kurzych piór. To poważny problem ekologiczny. Konwencjonalne metody utylizacji odpadów, np. spalanie, zakopywanie czy wytwarzanie pasz niskiej jakości, nie sprawdzają się w przypadku piór. Kremacja wiąże się z wydzielaniem do atmosfery ogromnych ilości gazów cieplarnianych, a na wysypiskach pióra zajmują przez długi czas dużo miejsca, bo keratyna wolno się rozkłada. Poza tym ludzie obawiają się ptasiej grypy, stąd wytwarzanie z nich pasz stało się mniej opłacalne. Do końca roku filipiński naukowiec ma przeprowadzić dalsze badania i "doszlifować" swój produkt. Ciekawe, czy przyjmie się on w innych częściach świata, zwłaszcza tych, gdzie pióra kojarzą się raczej z pierzynami i poduszkami lub puchowymi kurtkami niż dobrym materiałem budowlanym...
- 1 reply
-
- termity
- Menandro Acda
-
(and 5 more)
Tagged with:
-
Bakterie glebowe zostaną prawdopodobnie wykorzystane przy stabilizowaniu budynków w rejonach występowania trzęsień ziemi. Według badaczy z Uniwersytetu Kalifornijskiego w Davis, zadanie mikrobów byłoby proste: przetwarzałyby luźną piaszczystą glebę w skałę. Podczas silnych trzęsień ziemi piaski zachowują się jak ciecze, co, jak można się łatwo domyślić, nie wpływa korzystnie na usadowione na nich konstrukcje i budynki, które zostają zwyczajnie wciągnięte w głąb. Do tej pory inżynierowie wprowadzali do piaszczystych gleb związki chemiczne łączące ze sobą poszczególne ziarna. Jason DeJong, profesor nadzwyczajny inżynierii cywilnej i środowiskowej na UC Davis, twierdzi jednak, że działania takie prowadzą do skażenia wody i gleby. Nowa technologia była testowana jedynie w laboratorium. Spośród wielu różnych bakterii wybrano Bacillus pasteurii. Mikroorganizmy odkładają dookoła ziaren piasku kalcyt, czyli węglan wapnia (CaCO3), który działa jak cement. Podczas eksperymentów DeJong i zespół wprowadzali do ziemi kultury bakteryjne, dodatkowe składniki odżywcze oraz tlen. Okazało się, że umieszczony w cylindrze luźny piasek zamieniał się w twardy walec. Podobne zabiegi pozwalały łatać niewielkie zarysowania powstałe np. na pomnikach, ale jeszcze nigdy nie wzmacniano w ten sposób gleby. Profesor wylicza korzyści wynikające z zastosowania metody bakteryjnej: 1) jest nietoksyczna, 2) można się do niej odwołać na każdym etapie budowy czy "życia" już skonstruowanego budynku. Nie zmienia się struktury gleby, wypełnione zostają po prostu puste przestrzenie między ziarnami (Journal of Geotechnical and Geoenvironmental Engineering). Zespół Kalifornijczyków chce rozwinąć swoją technologię do tego stopnia, by można ją było zastosować w praktyce.
-
- Jason DeJong
- cement
- (and 8 more)