Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' superkondensator' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Cement i sadza, dwa materiały używane przez ludzkość od tysiącleci, mogą tworzyć podstawę nowoczesnych technologii. Ich odpowiednie połączenie pozwala bowiem na stworzenie... taniego systemu przechowywania energii. Wyobraźmy sobie budynek, w którego fundamentach przechowywana jest energia z umieszczonych na dachu paneli słonecznych, mówią naukowcy z MIT. To właśnie oni stworzyli nowy materiał, który w przyszłości może np. bezprzewodowo ładować samochód elektryczny poruszający się po drodze. Franz-Josef Ulm, Admin Masic, Yang-Shao Horn oraz czworo innych uczonych z MIT i Wyss Institute for Biologically Inspired Engineering, stworzyli superkondensator z cementu i sadzy, który opisali na łamach PNAS. Kondensatory to proste urządzenia złożone z dwóch przewodzących płytek zanurzonych w elektrolicie i przedzielonych membraną. Gdy przyłożymy do kondensatora napięcie, dodatnio naładowane jony z elektrolitu zgromadzą się na ujemnie naładowanej płytce, a jony o ładunku ujemnym przylgną do płytki o ładunku dodatnim. Membrana pomiędzy płytkami uniemożliwia migrację jonów, powstaje pole elektryczne pomiędzy płytkami i kondensator jest naładowany. Urządzenie jest w stanie przechowywać energię przez długi czas i bardzo szybko ją uwolnić w razie potrzeby. Superkondensator to kondesator zdolny do przechowywania wyjątkowo dużej ilości ładunków. Pojemność kondensatora zależy od całkowitej powierzchni płytek. W przypadku połączenia cementu i sadzy kluczem do sukcesu było uzyskanie niezwykle dużej powierzchni materiału przewodzącego wewnątrz betonowego bloku. Naukowcy uzyskali to łącząc sadzę, która bardzo dobrze przewodzi prąd, z mieszanką cementową i wodą. Woda, reagując z cementem, w sposób naturalny tworzy sieć kanalików. Sadza migruje przez te kanaliki, tworząc sieć w zastygniętym betonowym bloku. Ma ona strukturę fraktalną. Z większy ramion sieci wyrastają mniejsze, a z nich jeszcze mniejsze i tak dalej. W ten sposób w niewielkiej objętości powstaje sieć materiału przewodzącego o bardzo dużej powierzchni. Wypełniliśmy tym materiałem plastikowe tuby i pozostawiliśmy go do zastygnięcia na co najmniej 28 dni. Później pocięliśmy beton na fragmenty wielkości elektrod, każdą z nich zanurzyliśmy w standardowym elektrolicie (chlorku potasu) i z dwóch elektrod oddzielonych membraną składaliśmy superkondensatory, mówi profesor Ulm. Z obliczeń wynika, że betonowy blok o objętości 45 m3 wykonany z takiego materiału może przechować około 10 kWh energii. To mniej więcej tyle, ile zużywa w ciągu dnia typowe gospodarstwo domowe. Innymi słowy, domek jednorodzinny posadowiony na fundamentach o objętości 45 m3 zyskiwałby system przechowywania energii na cały dzień. To w znacznym stopniu uniezależniłoby gospodarstwo wyposażone w panele słoneczne od zewnętrznych dostawców energii. Nowy materiał mógłby potencjalnie znaleźć też zastosowanie do budowy dróg czy parkingów. Przechowywana w nim energia mogłaby służyć do bezprzewodowego ładowania samochodów elektrycznych. To jednak jeszcze bardziej odległa wizja, niż przechowywanie energii w fundamentach budynków. Olbrzymią zaletą tego systemu jest jego niezwykła skalowalność. W ten sposób można tworzyć zarówno elektrody o grubości 1 mm, jak i 1 metra. Wszystko zależy od tego, jak dużo energii chcemy przechowywać. Co więcej, stosując różne mieszanki można odpowiednio dostosowywać właściwości naszego superkondensatora. W przypadku dróg czy parkingów ładujących samochody elektryczne konieczne byłoby bardzo szybkie ładowanie i rozładowywanie. W przypadku domów proces ładowania i rozładowywania fundamentów może przebiegać znacznie wolniej. W tej chwili naukowcy skupiają się na zbudowaniu betonowego bloku zdolnego do przechowania takiej samej ilości energii, co standardowe akumulatory samochodowe. Superkondensatory nie mają możliwości przechowywania tak dużej ilości energii, co standardowe akumulatory. Mają jednak wiele innych zalet. Można je bardzo szybko ładować i rozładowywać i wytrzymują miliony cykli pracy. Ponadto, w przeciwieństwie do akumulatorów, przechowują energię nie w postaci chemicznej, a w postaci pola elektrycznego. « powrót do artykułu
  2. Superlekkie materiały składające się w ponad 99% z powietrza mogą stać się kluczowymi elementami dostarczającymi energię przyszłym misjom kosmicznym. Materiały te, porowate aerożele węglowe, tworzą elektrody superkondensatora zbudowanego na zlecenie NASA przez Merced nAnomaterials Center for Energy and Sensing, University of California, Santa Cruz (UCSC), University of California, Merced i Lawrence Livermore National Laboratory. Superkondensator przyda się też podczas prac na biegunach, gdyż działa w bardzo niskich temperaturach. Wiele pojazdów kosmicznych wymaga stosowania wewnętrznego ogrzewania. Łaziki pracujące na Marsie muszą mierzyć się ze średnimi temperaturami rzędu -62 stopnie Celsjusza. W zimie temperatura spada poniże -125 stopni Celsjusza. Dlatego też np. Perseverance wyposażony jest w grzałki, które dbają o to, by nie zamarzł elektrolit w akumulatorach łazika. Jednak grzałki i ich źródła zasilania to kolejne elementy dodające masy łazikowi, przez co rosną koszty i poziom skomplikowania misji. Rozwiązaniem wielu problemów mogłyby być superkondensatory. To urządzenia, które łączą zalety akumulatorów i kondensatorów. Przede wszystkim są zdolne do przechowywania znacznie większych ilości energii niż kondensatory, chociaż nie są tak dobre w jej przechowywaniu jak akumulatory. Jednak nad akumulatorami mają tę przewagę, że można je ładować i rozładować w ciągu minut. Ponadto wytrzymują miliony cykli ładowanie/rozładowanie, podczas gdy akumulatory potrafią przetrwać jedynie kilka tysięcy takich cykli. W końcu, co ważne, w przeciwieństwie do akumulatorów nie działają dzięki reakcjom chemicznym, a dzięki przechowywaniu ładunków w formie naładowanych jonów umieszczonych na powierzchni elektrod. Zespół pracujący pod kierunkiem Jennifer Lu z UC Merced i Yata Li z USCS stworzył elektrody do swojego kondensatora za pomocą druku 3D. Atramentem było połączenie celulozowych nanokrysztalów, które dostarczyły węgla, i krzemowych mikrosfer, tworzących podporę dla makroporów. W ten sposób powstał aerożel z porami o średnicy od kilku nanometrów do 500 mikrometrów. Utworzono hierarchiczną strukturę kanałów, które znakomicie zwiększają tempo, w jakim jony z elektrolitu przemieszczają się przez materiał, minimalizując drogę, którą muszą przebyć. Uzyskany aerożel ma powierzchnię około 1750 m2/g, a stworzona z niego elektroda charakteryzuje się pojemnością elektryczną rzędu 148,6 F/g przy przyłożonym napięciu 5 mV/s. Twórcy elektrody wykazali, że działa ona przy temperaturze nawet -70 stopni Celsjusza, podczas gdy większość komercyjnie dostępnych akumulatorów litowo-jonowych i superkondensatorów przestaje działać w temperaturze -20 do -40 stopni Celsjusza, gdyż dochodzi do zamarznięcia elektrolitu. Obecnie trwają testy mające na celu dokładne określenie wydajności elektrody przy niskich temperaturach. Prowadzimy testy w warunkach, jakie panują na Księżycu, Marsie i Międzynarodowej Stacji Kosmicznej, mówi Lu. Szczegóły badań opublikowano na łamach Nano Letters. « powrót do artykułu
×
×
  • Dodaj nową pozycję...