Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'bioluminescencja'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Zwierzęta przybierają na ogół jakieś barwy, by odstraszyć drapieżniki albo się przed nimi ukryć. Okazuje się, że niesymbiotyczne bakterie oceaniczne zachowują się dokładnie na odwrót - świecą, by zwrócić na siebie uwagę, bo zjedzenie stanowi gwarancję rozprzestrzenienia i opanowania nowych okolic. Margarita Zarubin, studentka z Uniwersytetu Hebrajskiego w Jerozolimie, która wcześniej uczyła się w Oldenburgu, badała bioluminescencyjne bakterie Photobacterium leiognathi. Hipoteza, że mikroby świecą, by zostać upolowane, pojawiła się ponad 30 lat temu, ale bazowała głównie na częstym występowaniu luminescencyjnych bakterii w przewodzie pokarmowym ryb. Nie przeprowadzono eksperymentów, które mogłyby to potwierdzić. Chcąc sprawdzić, "co w morskiej trawie piszczy", izraelski zespół umieścił na jednym końcu akwarium torebkę ze zwykłymi P. leiognathi, a na drugim z bakteriami zmodyfikowanymi genetycznie w taki sposób, by nie mogły świecić. W zbiorniku znajdowały się m.in. artemia (Artemia). Okazało się, że skorupiaki i inne organizmy gromadziły się wokół świecącego woreczka, a koło ciemnego nie. W kolejnym etapie badań biolodzy pozwolili wszystkim pływać swobodnie. Po paru godzinach odwłoki przedstawicieli zooplanktonu zaczęły świecić. Później świecące artemia zmieszano z osobnikami, które nie jadły P. leiognathi i umieszczono w kanale wodnym z polującymi na nie rybami Apogon annularis. By na filmie było dokładnie widać przebieg zdarzeń, wykorzystano podświetlenie podczerwienią. Okazało się, że nocne ryby polowały wyłącznie na skorupiaki ze świecącymi odwłokami. Po zbadaniu odchodów A. annularis szybko stało się jasne, że bakterie przeszły przez ich przewód pokarmowy bez najmniejszego uszczerbku. Wykorzystując skorupiaki i ryby, luminescencyjne bakterie nie tylko przemieszczały się po oceanie, ale i pożywiły się przy okazji tym, co znajdowało się w jelitach przewoźnika. To wysoce korzystne przede wszystkim dla bakterii z ubogich w pokarm głębin.
  2. Błękitne rozbłyski to rodzaj bioluminescencji związanej z bruzdnicami. Biologom po raz pierwszy udało się opisać mechanizm tego zjawiska, które można obecnie obserwować w wodach przybrzeżnych Kalifornii. J. Woodland Hastings, jeden z członków zespołu badawczego i główny autor artykułu, który ukazał się w Proceedings of the National Academy of Sciences, już niemal 40 lat temu przekonywał, że u bruzdnic muszą występować bramkowane napięciem kanały protonowe. Jednak dopiero Susan Smith z Emory School of Medicine, Thomas DeCoursey z Rush University Medical Center i inni zdołali potwierdzić, że tak jest, identyfikując i testując u glonów geny, które przypominają geny kanałów zbadane wcześniej u ludzi, myszy oraz osłonic. Wg naukowców, świecenie pojawia się w wyniku następującego ciągu zdarzeń. Mechaniczne drażnienie przez wodę generuje impulsy elektryczne przepływające wokół wypełnionej protonami wakuoli (wodniczki). Impulsy doprowadzają do otwarcia bramkowanych napięciem kanałów protonowych, które łączą wakuolę z kieszeniami w błonie tych struktur komórkowych - scyntylonami. Protony docierające do scyntylonów aktywują tam lucyferazę (lucyferaza to enzym występujący u niektórych zwierząt, który po dodaniu związku zwanego lucyferyną oraz źródła energii chemicznej wytwarza błękitne światło). Stąd świecenie w czasie zakwitów bruzdnic.
  3. Dwoje naukowców z Instytutu Oceanografii imienia Scripps Uniwersytetu Kalifornijskiego w San Diego zbadało tajemnicze rozbłyski oślepiającego luminescencyjnego światła, emitowane przez ślimaka morskiego Hinea brasiliana. Wg nich, mają one służyć odstraszaniu drapieżników, stwarzając złudzenie, że migające zwierzęta są większe niż w rzeczywistości. Mięczaki te występują przeważnie w ciasnych skupiskach wzdłuż skalistych brzegów. Amerykanie zauważyli, że zamiast wytwarzać skoncentrowany promień światła, H. brasiliana wykorzystują muszlę do rozpraszania i rozprzestrzeniania na wszystkie strony zielonej poświaty. Dimitri Deheyn przeprowadził eksperymenty w uniwersyteckim akwarium. Dzięki temu udokumentował, w jaki sposób ślimak włącza świecenie. Podczas badań konfrontował mięczaka z krabem lub pływającą w pobliżu krewetką. Nerida Wilson, która w międzyczasie przeszła do Muzeum Australijskiego w Sydney, pomagała koledze, zbierając ślimaki u wybrzeży Australii. To rzadkość, by jakiekolwiek żyjące przy dnie ślimaki wykorzystywały bioluminescencję. Jeszcze bardziej zdumiewa, że nasz mięczak ma tak skutecznie maksymalizującą sygnał muszlę – podkreśla Wilson. Odkrycie mechanizmu, za pośrednictwem którego H. brasiliana świeci, zaskoczyło naukowców. Dotąd żółtawą, nieprzezroczystą muszlę postrzegano bowiem jako strukturę uniemożliwiającą transmisję światła. Tymczasem okazuje się, że działa ona jak filtr. Gdy ciało ślimaka zaczyna świecić, muszla rozprasza tylko zielone promieniowanie. W przyszłości akademicy zamierzają dokładniej zbadać to zjawisko. Najprawdopodobniej znajdzie ono zastosowanie przemysłowe.
  4. Belgijscy naukowcy odkryli, że rekiny z rodzaju Etmopterus włączają i wyłączają swoją bioluminescencję dzięki trzem hormonom. To pierwszy tego typu przypadek, u innych zwierząt za to samo odpowiadają bowiem neurony (Journal of Experimental Biology). W grę wchodzą melatonina, prolaktyna i alfa-melanotropina, które kontrolują też zabarwienie skóry tych ryb. Dzięki najnowszemu odkryciu potwierdza się przypuszczenie wielu biologów, że bioluminescencja pojawiała się w toku ewolucji kilkakrotnie. Emitujące światło komórki nie są połączone z pełniącymi istotniejszą rolę skupiskami neuronów. Na nieznany dotąd mechanizm działania wskazywał też wolny "rozruch". Kiedy fragmenty skóry rekinów wystawiono na oddziaływanie hormonów i neuroprzekaźników, udało się potwierdzić, że włącznikami są rzeczywiście te pierwsze. Melatonina powoli wywoływała utrzymujące się przez parę godzin świecenie. Prolaktyna działała znacznie szybciej, ale i świecenie zanikało prędzej, bo po godzinie. Naukowcy przypuszczają, że hormon ten bierze udział w komunikacji, np. podczas szukania partnera. Trzeci z hormonów – alfa-melanotropina - wyłączał luminescencję. W przypadku kilku "pospolitych" neuroprzekaźników nie wystąpił żaden efekt. Julien Claes i Jérôme Mallefet z Katolickiego Uniwersytetu w Leuven uważają, że u kolczaków czarnych (Etmopterus spinax) narządy świetlne zapewniają kamuflaż. Podświetlają rybę od dołu, gdy schodzi na większe głębokości. Choć melatonina nie jest tak szybka i precyzyjna jak występujące u ryb kostnoszkieletowych mechanizmy kontrolowane przez nerwy, u rekinów doskonale się sprawdza. Zanurzając się, natrafiają na ciemniejsze wody, a skoro melatonina jest tzw. hormonem ciemności, pasuje tu idealnie. Claes jak ognia unika uogólnień, ale podejrzewa, że u innych "wyposażonych" w bioluminescencję rekinów fotofory także są uruchamiane przez hormony. Naukowiec już planuje dalszy ciąg badań.
×
×
  • Create New...