Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'RNA' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 12 wyników

  1. Jedno z ważnych pytań o początki życia brzmi: w jaki sposób cząstki RNA swobodnie przemieszczające się w pierwotnej zupie zostały opakowane w chronione błoną komórki. Odpowiedź na to pytanie zaproponowali właśnie na łamach Science Advances inżynierowie i chemicy z Uniwersytetów w Chicago i w Houston oraz Jack Szostak, laureat Nagrody Nobla w dziedzinie fizjologii lub medycyny. W swoim artykule pokazują, jak przed 3,8 miliardami lat krople deszczu mogły ochronić pierwsze protokomórki i umożliwić powstanie złożonych organizmów żywych. Uczeni przyjrzeli się koacerwatom, dużym grupom cząstek, samoistnie tworzącym się w układach koloidalnych (niejednorodnych mieszaninach). Zachowanie koacerwatów można porównać do zachowania kropli oleju w wodzie. Już dawno pojawiła się hipoteza, że nie posiadające błon mikrokrople koacerwatów mogły być modelowymi protokomórkami, gdyż mogą rosnąć, dzielić się i gromadzić wewnątrz RNA. Jednak błyskawiczna wymiana RNA pomiędzy koacerwatami, ich szybkie łączenie się, zachodzące w ciągu minut oznaczają, że poszczególne krople nie są w stanie utrzymać swojej odrębności genetycznej. To zaś oznacza, że ewolucja darwinowska nie jest możliwa, a populacja takich protokomórek byłaby narażona na błyskawiczne załamanie w wyniku rozprzestrzeniania się pasożytniczego RNA, czytamy w artykule. Innymi słowy każda kropla, która zawierałaby mutację potencjalnie użyteczną na drodze do powstania życia, błyskawicznie wymieniałaby swoje RNA z innymi RNA, nie posiadającymi takich pożytecznych mutacji. W bardzo szybkim tempie wszystkie krople stałyby się takie same. Nie byłoby różnicowania, konkurencji, a zatem nie byłoby ewolucji i nie mogłoby powstać życie. Jeśli dochodzi do ciągłej wymiany molekuł czy to między kroplami czy między komórkami i po krótkim czasie wszystkie one wyglądają tak samo, to nie pojawi się ewolucja. Będziemy mieli grupę klonów, wyjaśnia Aman Agrawal z Pritzker School of Molecular Engineering na University of Chicago. Nauka od dawna zastanawia się, co było pierwszą molekułą biologiczną. To problem kury i jajka. DNA koduje informacje, ale nie przeprowadza żadnych działań. Białka przeprowadzają działania, ale nie przenoszą informacji. Badacze tacy jak Szostak wysunęli hipotezę, że pierwsze było RNA. To molekuła jak DNA, zdolna do kodowania informacji, ale zawija się jak białko. RNA było więc kandydatem na pierwszy materiał biologiczny, a koacerwaty kandydatami na pierwsze protokomórki. Wszystko wydawało się dobrze układać, aż w 2014 roku Szostak opublikował artykuł, w którym informował, że wymiana materiału pomiędzy kroplami koacerwatów zachodzi zbyt szybko. Możesz stworzyć różnego rodzaju krople koacerwatów, ale nie zachowają one swojej unikatowej odrębności. Zbyt szybko będą wymieniały RNA. To był problem z którym przez długi czas nie potrafiono sobie poradzić, mówi Szostak. W naszym ostatnim artykule wykazaliśmy, że problem ten można przynajmniej częściowo przezwyciężyć, jeśli koacerwaty zamkniemy w wodzie destylowanej – na przykład wodzie deszczowej czy jakiejś innej słodkiej wodzie. W kroplach takich pojawia się rodzaj wytrzymałej błony, która ogranicza wymianę zawartości, dodaje uczony. Na trop tego zjawiska naukowcy wpadli, gdy Aman Agrawal był na studiach doktoranckich. Badał zachowanie koacerwatów poddanych działaniu pola elektrycznego w destylowanej wodzie. Jego badania nie miały nic wspólnego z początkami życia. Interesował go fascynujący materiał z inżynieryjnego punktu widzenia. Manipulował napięciem powierzchniowym, wymianą soli, molekuł itp. Chciał w swojej pracy doktorskiej badać podstawowe właściwości koacerwatów. Pewnego dnia Agrawal jadł obiad z promotorem swojej pracy magisterskiej, profesorem Alamgirem Karimem oraz jego starym znajomym, jednym ze światowych ekspertów inżynierii molekularnej, Matthew Tirrellem. Tirrell zaczął się zastanawiać, jak badania Agrawala nad wpływem wody destylowanej na koacerwaty mogą się mieć do początków życia na Ziemi. Zadał swoim rozmówcom pytanie, czy 3,8 miliarda lat temu na naszej planecie mogła istnieć woda destylowana. Spontanicznie odpowiedziałem „deszczówka”! Oczy mu się zaświeciły i od razu było widać, że jest podekscytowany tym pomysłem. Tak połączyły się nasze pomysły, wspomina profesor Karim. Tirrell skontaktował Agrawla z Szostakiem, który niedawno rozpoczął na Uniwersytecie Chicagowskim nowy projekt badawczy, nazwany z czasem Origins of Life Initiative. Profesor Tirrel zadał Szostakowi pytanie: Jak sądzisz, skąd na Ziemi przed powstaniem życia mogła wziąć się woda destylowana. I Jack odpowiedział dokładnie to, co już usłyszałem. Że z deszczu. Szostak dostarczył Agrawalowi próbki DNA do badań, a ten odkrył, że dzięki wodzie destylowanej transfer RNA pomiędzy kroplami koacerwatów znacząco się wydłużył, z minut do dni. To wystarczająco długo, że mogło dochodzić do mutacji, konkurencji i ewolucji. Gdy mamy populację niestabilnych protokomórek, będą wymieniały materiał genetyczny i staną się klonami. Nie ma tutaj miejsca na ewolucję w rozumieniu Darwina. Jeśli jednak ustabilizujemy te protokomórki tak, by przechowywały swoją unikatową informację wystarczająco długo, co najmniej przez kilka dni, może dojść do mutacji i cała populacja będzie ewoluowała, stwierdza Agrawal. Początkowo Agrawal prowadził swoje badania z komercyjnie dostępną laboratoryjną wodą destylowaną. Jest ona wolna od zanieczyszczeń, ma neutralne pH. Jest bardzo odległa od tego, co występuje w naturze. Dlatego recenzenci pisma naukowego, do którego miał trafić artykuł, zapytali Agrawala, co się stanie, jeśli woda będzie miała odczyn kwasowy, będzie bardziej podobna do tego, co w naturze. Naukowcy zebrali więc w Houston deszczówkę i zaczęli z nią eksperymentować. Gdy porównali wyniki badań z wykorzystaniem naturalnej deszczówki oraz wody destylowanej laboratoryjnie, okazało się, że są one identyczne. W obu rodzajach wody panowały warunki, które pozwalałyby na ewolucję RNA wewnątrz koacerwatów. Oczywiście skład chemiczny deszczu, który pada obecnie w Houston, jest inny, niż deszczu, który padał na Ziemi przed 3,8 miliardami lat. To samo zresztą można powiedzieć o modelowych protokomórkach. Autorzy badań dowiedli jedynie, że taki scenariusz rozwoju życia jest możliwy, ale nie, że miał miejsce. Molekuły, których użyliśmy do stworzenia naszych protokomórek to tylko modele do czasu, aż znajdziemy bardziej odpowiednie molekuły. Środowisko chemiczne mogło się nieco różnić, ale zjawiska fizyczne były takie same, mówi Agrawal. « powrót do artykułu
  2. Jedna z najpopularniejszych teorii na temat początków życia na Ziemi mówi o tzw. świecie RNA. Wyjątkowe właściwości tego związku, pozwalające mu na przechowywanie informacji i katalizowanie reakcji chemicznych, czyniłyby z niego idealną substancję regulującą procesy życiowe najprymitywniejszych form życia. Niestety, dotychczas nie był znany żaden przykład cząsteczek RNA posiadających obie opisywane cechy jednocześnie. Przełomu dokonali badacze z Instytutu Scripps prowadzeni przez prof. Geralda Joyce'a. Dowodzą oni, że odpowiednio dobrana para cząsteczek kwasu rybonukleinowego spełnia założenia teorii o "świecie RNA". Co więcej, uzyskane molekuły "ewoluują" w warunkach laboratoryjnych, prowadząc do wyselekcjonowania najbardziej wydajnych wariantów. Naukowcy zsyntetyzowali pulę różnych wariantów RNA, które umieszczono następnie w roztworze zawierającym nukleotydy - pojedyncze cząsteczki, których łączenie się w łańcuchy (polimeryzacja) jest podstawą tworzenia nowych nici RNA. Jak się okazuje, niektóre nici "współpracują" ze sobą w parach, przeprowadzając replikację obu z nich. interakcja pomiędzy nićmi sprawia, że są one w stanie wzajemnie odczytywać zapisaną w nich informację, a następnie, dobierając z roztworu odpowiednie nukleotydy, tworzyć ich kopie. Zjawisko to jest o tyle ciekawsze, że każda z badanych molekuł była złożona z dwóch podjednostek. Oznacza to, że dla zajścia całej reakcji potrzebne są aż cztery nici kwasu rybonukleinowego. Opisywany proces zachodzi tak długo, aż w roztworze nie zabraknie nukleotydów. Jak zaznacza prof. Joyce, opracowany przez niego i jego współpracowniczkę, Tracey A. Lincoln, model to jedyny przypadek poza biologią, w którym informacja zapisana w molekułach została unieśmiertelniona. Łącznie badaczom z instytutu Scripps udało się wytworzyć aż 12 par replikujących się wzajemnie nici RNA. Kolejny przeprowadzony eksperyment polegał na wymieszaniu ze sobą różnych par replikujących się związków. Doprowadził on nie tylko do eliminowania najmniej wydajnych par, lecz także do innych zmian typowych dla ewolucji, czyli mutacji. Te drobne zakłócenia informacji genetycznej przenoszonej przez cząsteczki RNA powodowały zmiany tempa namnażania nici. Dla mnie to tak naprawdę najważniejszy rezultat - ocenia tę część badań prof. Joyce. Przeprowadzone doświadczenie bez wątpienia ma ogromną wartość poznawczą, lecz praca badaczy z instytutu Scripps to nie tylko istotna przesłanka na poparcie tezy o "świecie RNA". Niejako przy okazji potwierdza się także, że wpływ mutacji na tempo ewolucji można dostrzec nawet na tak niepozornym obiekcie, jak pojedyncze cząsteczki.
  3. Hipoteza tzw. świata RNA, zgodnie z którą pierwsze formy życia na Ziemi wykorzystywały cząsteczki RNA zarówno jako nośnik informacji genetycznej, jak i cząsteczki o charakterze enzymów, jest jedną z najpopularniejszych teorii dotyczących początków życia na naszej planecie. Najnowsze dane, dostarczone przez włoskich naukowców, dodatkowo umacniają wiarygodność tej hipotezy. Zespół prof. Ernesto Di Mauro z rzymskiego uniwersytetu La Sapienza analizował zachowanie cyklicznych nukleotydów - związków blisko spokrewnionych z jednostkami budulcowymi RNA. Włoscy naukowcy chcieli sprawdzić, czy cząsteczki tych substancji mogą przejść spontaniczną polimeryzację, której produktem byłyby cząsteczki RNA. Jak wykazano podczas serii prostych eksperymentów, do samoczynnego zajścia syntezy RNA wystarczyło podgrzanie środowiska, w którym przebywały cykliczne nukleotydy. Po podgrzaniu wodnego roztworu tych cząsteczek do temperatur z zakresu od 40 do 90 °C okazało się, że możliwe jest powstanie polimerów RNA o długości przekraczającej 120 nukleotydów. W badanych przypadkach zsyntetyzowane cząsteczki były co prawda zbudowane zaledwie z jednego typu nukleotydów (a nie z czterech, jak cząsteczki RNA występujące w organizmach żywych), lecz fakt zaobserwowania spontanicznej syntezy łańcuchów RNA oznacza przełom w badaniach zarówno nad chemicznymi właściwościami tego związku, jak i nad początkami życia na Ziemi. Odkrycie dokonane przez zespół prof. Di Mauro jest kolejną ważną przesłanką na rzecz prawdziwości hipotezy o świecie RNA. Jest ono tym ważniejsze, że cykliczne nukleotydy także mogą powstawać spontanicznie, zaś substratami do ich syntezy są proste związki, które mogły występować na Ziemi kilka miliardów lat temu. Wiele wskazuje więc na to, że powstanie życia na naszej planecie zawdzięczamy... serii stosunkowo prostych reakcji chemicznych.
  4. Bardzo krótkie cząsteczki RNA, uznawane dotychczas za pośrednie produkty rozpadu większych cząsteczek tego związku, okazują się zadziwiająco trwałe - donoszą badacze z University of Pittsburgh. Mało tego - najprawdopodobniej odgrywają one istotną rolę w fizjologii komórki. Cząsteczki, o których mowa, nazwano niezwykle krótkimi RNA (ang. unusually small RNAs - usRNA). Nic dziwnego - ze swoją długością wynoszącą zaledwie około 15 nukleotydów są one krótsze nawet od słynnych siRNA, za odkrycie funkcji których przyznano w 2006 r. Nagrodę Nobla. Choć z obecności usRNA w komórkach zdawano sobie sprawę od co najmniej kilku lat, dotychczas uznawano je za nieaktywne biologicznie produkty pośrednie rozpadu większych cząsteczek. Dopiero naukowcy z Pittsburgha postanowili przyjrzeć się im dokładniej. Jak się okazuje, przeczucia ich nie zawiodły - analizowane cząsteczki odgrywają ważną rolę w regulacji licznych procesów fizjologicznych. Jak wykazała analiza sekwencji nukleotydów usRNA, wiele z nich posiada na jednym z końców bardzo podobne względem siebie (lub, jak mawiają biolodzy, konserwatywne) odcinki, co skłoniło naukowców do przypuszczenia, że może to wynikać z istnienia konretnego zastosowania dla tych cząsteczek. Rzeczywiście, po pewnym czasie zaobserwowano, że niektóre cząsteczki usRNA wchodzą w bezpośrednią interakcję z białkami biorącymi udział w regulacji aktywności wielu genów. Jakby tego mało, usRNA okazały się zadziwiająco trwałe zarówno pod względem chemicznym, jak i z punktu widzenia oporności na degradację przez enzymy. Dość mocno sugeruje to, że nie są one tylko marnym produktem rozpadu aktywnych biologicznie rodzajów RNA, lecz same także mają własne zadania do wykonania. Te odkrycia sugerują, że usRNA są zaangażowane w procesy biologiczne i że powinniśmy je dalej badać, uważa dr Bino John, jeden z autorów odkrycia. Dodaje przy tym, że dokładne zrozumienie natury tych cząsteczek może pozwolić na opracowanie metod diagnostyki oraz leczenia licznych chorób.
  5. Zespół prof. Ravena H. Huanga z University of Illinois zidentyfikował u cyjanobakterii Anabaena variabilis system precyzyjnej naprawy uszkodzonych cząsteczek RNA. Nigdy dotąd mechanizmu takiego nie odkryto u bakterii. Nietypowy proces zachodzi dzięki dwóm białkom, Hen1 oraz Pnkp, kodowanym przez geny zorganizowane w tzw. operon, czyli układ zapewniający ich równoczesną aktywację w reakcji na określone warunki środowiska. Organizacja taka nie jest przypadkowa, okazało się bowiem, że zajście procesu naprawy jest ściśle zależne od syntezy obu tych białek i ich wejścia we wzajemną interakcję. Dzięki serii eksperymentów in vitro udało się wykazać, że kompleks Hen1/Pnkp skutecznie naprawia uszkodzenia RNA wywołane przez enzymy z grupy kolicyn i przywraca prawidłową strukturę naruszonych cząsteczek. Dodatkowo zaobserwowano, że w miejscu naprawionego uszkodzenia dochodzi do tzw. metylacji RNA, czyli przyłączenia do niego grupy metylowej -CH3. Modyfikacja taka zapewnia cząsteczce oporność na kolicyny, dzięki czemu ponowne zetknięcie z enzymem nie jest dla nich groźne. Jak zaznacza żartobliwie prof. Huang, oznacza to, że "naprawione" RNA jest dzięki temu nawet "lepsze niż nowe".
  6. Zwolennicy teorii "świata RNA", mówiącej o tym, iż nośnikiem materiału genetycznego i jednocześnie aparatem enzymatycznym pierwszych form życia na Ziemi było właśnie RNA, mają powody do satysfakcji. Na łamach czasopisma Nature pojawiła się publikacja udowadniająca możliwość spontanicznej syntezy prekursorów tego związku. Z punktu widzenia chemii RNA jest łańcuchową cząstką złożoną z następujących po sobie nukleotydów, czyli elementów złożonych z reszt cukru rybozy, kwasu fosforowego (V) oraz zasady azotowej należącej do grupy puryn lub pirymidyn. Genetyków z kolei znacznie bardziej interesuje sekwencja nukleotydów w nici RNA, gdyż to ona jest nośnikiem informacji genetycznej. Wraz ze wzrostem popularności hipotezy "świata RNA" wzrastała liczba badaczy próbujących odtworzyć warunki potrzebne do samoistnej syntezy tego związku. Ogromna większość próbowała wytworzyć kolejno wszystkie trzy związki potrzebne do syntezy nukleotydów, a następnie połączyć je ze sobą. Nikomu się to nie udało. Jak się jednak okazuje, zmiana podejścia do problemu wystarczyła, by dokonać przełomu. Autorem odkrycia jest prof. John D. Sutherland z Uniwersytetu w Manchesterze. Zamiast osobno syntetyzować rybozę i zasadę azotową, badacz postanowił zsyntetyzować cały nukleotyd pirymidynowy za jednym podejściem. Eksperyment powiódł się, zaś mieszanina reakcyjna potrzebna do wytworzenia prekursorów RNA zawierała zaledwie pięć prostych związków: cyjanamid, cyjanoacetylen, aldehyd glikolowy, aldehyd glicerolowy i aniony kwasu fosforowego (V). Wszystkie te substancje mogły istnieć na Ziemi w okresie odpowiadającym hipotetycznemu istnieniu "świata RNA". Mówiąc najprościej, wzięliśmy połowę [cząsteczki] zasady, dodaliśmy do tego połowę [cząsteczki] cukru, dodaliśmy kolejny fragment cząsteczki zasady i tak dalej, wspomina prof. Sutherland. Kluczem okazała się kolejność, w której poszczególne składniki były dodawane i sposób ich mieszania - było to zupełnie jak robienie sufletu. Niestety, nie wszystkie zagadki zostały jeszcze rozwiązane. Prof. Sutherland zastrzega, że przeprowadzony przez niego eksperyment zaszedł w ściśle kontrolowanych warunkach naczynia laboratoryjnego. Z drugiej jednak strony nie sposób nie zauważyć, że ewolucja miała na realizację tego zadania wiele milionów lat.
  7. Procesy ewolucji i specjalizacji mogą zachodzić nawet w przypadku... pojedynczych cząsteczek RNA - udowadniają naukowcy z instytutu Scripps. To istotny krok ku zrozumieniu procesu powstawania życia na Ziemi. Odkrycia dokonała dr Sarah Voytek. Badaczka przygotowała w warunkach laboratoryjnych dwa rodzaje tzw. enzymatycznego RNA, a następnie wymieszała je ze sobą i badała ich wzajemne oddziaływania. Powszechnie uważa się, że różne formy enzymatycznego RNA mogły być pierwszymi ziemskimi tworami wykazującymi niektóry cechy organizmów żywych. Świadczą o tym dwie istotne cechy tych cząsteczek: zdolność do przechowywania informacji, zapisanej jako sekwencja nukleotydów w nici RNA, a także właściwości umożliwiające powielanie własnej struktury i informacji genetycznej. Molekuły takie stanowią dzięki temu interesujący model do badań nad ewolucją. Aby sprawdzić, czy dwa rodzaje RNA mogą na siebie oddziaływać podobnie do dwóch gatunków organizmów żywych, dr Voytek zsyntetyzowała dwa rodzaje enzymatycznego RNA. Oba posiadały zdolność do replikacji, lecz proces ten wiązał się z występowaniem mutacji. Jak wykazała badaczka, po pewnym czasie formy niezdolne do wydajnego namnażania zanikały, zaś liczba cząsteczek replikujących się szybko wzrastała. Wyjątkowo ciekawe zjawisko zaobserwowano po zmieszaniu oba rodzajów cząsteczek. Umieszczono je w środowisku zawierającym pięć różnych substancji, które mogły co prawda zostać wbudowane do powstających molekuł, lecz nigdy wcześniej nie uczestniczyły w ewolucji któregokolwiek rodzaju RNA. Efektem doświadczenia była wyraźna specjalizacja poszczególnych "gatunków" - każdy z nich zmutował do postaci umożliwiającej optymalne wykorzystanie określonego składnika, lecz jednocześnie przestawał wykorzystywać związki używane przez cząsteczki z drugiej grupy. Po kilkuset rundach replikacji zaobserwowano jeszcze jedno interesujące zjawisko: zmianę schematu namnażania. Podczas, gdy jeden z "gatunków" RNA pochłaniał niezwykle duże ilości substratów, drugi zużywał zasoby nieco wolniej, lecz pojedyncza tura namnażania kończyła się dla niego wytworzeniem trzykrotnie większej liczby cząsteczek potomnych. Do złudzenia przypomina to różne strategie rozrodcze w świecie ożywionym, gdzie jedne zwierzęta składają tysiące jaj rocznie, zaś inne rodzą nieliczne potomstwo, lecz sprawują nad nim troskliwą opiekę. Prowadzenie badań w skali pojedynczych cząsteczek ma głęboki sens, ponieważ do niedawna brakowało przekonujących danych na temat możliwego scenariusza transformacji form nieożywionych w ożywione. Eksperymenty podobne do tych prowadzonych przez dr Voytek mogą więc stać się niezwykle istotne dla naszego pojmowania procesu ewolucji i rozwoju życia na Ziemi.
  8. Choć teoria ewolucji została powszechnie zaakceptowana przez naukowców, od wielu lat nie ustalono, w jaki sposób powstały pierwsze formy życia na naszej planecie. Teraz, dzięki eksperymentowi przeprowadzonemu przez badaczy z Uniwersytetu Rzymskiego, poznaliśmy istotne fakty na temat powstawania ważnych związków organicznych. Doświadczenie pokazało, w jaki sposób może dojść do samoistnej syntezy długich fragmentów RNA - jednego z nośników informacji genetycznej, posiadającego także właściwości katalizatora (substancji ułatwiającej zachodzenie niektórych reakcji chemicznych). Uważa się, że właśnie takie cząsteczki mogły być najważniejszym składnikiem pierwszych, niezwykle prymitywnych komórek. W normalnych warunkach cząsteczki RNA mogą co prawda powstawać samoistnie, lecz wiązania pomiędzy tworzącymi je podjednostkami (nukleotydami) są bardzo niestabilne. Z tego powodu samoczynna synteza długich nici RNA wydaje się mało prawdopodobna. Jak się jednak okazuje, w odpowiednich warunkach kilka wytworzonych osobno łańcuchów może się ze sobą łączyć, tworząc znacznie dłuższą cząsteczkę. Głównym autorem eksperymentu jest Ernesto Di Mauro. Badacz testował zdolność RNA do ligacji, czyli łączenia się ze sobą całych nici, w zależności od pH oraz temperatury środowiska. Okazuje się, że przy lekko zakwaszonym środowisku oraz temperaturze nieco poniżej 70 stopni Celsjusza wystarczy zaledwie kilkanaście godzin, by w roztworze powstały stosunkowo długie cząsteczki. Na podstawie doświadczenia Di Mauro wykazał, że powstające molekuły mogą osiągać długość około stu nukleotydów. Jest to niezwykle istotne, gdyż właśnie taka długość łańcucha jest uznawana za swoistą granicę: cząsteczki dłuższe od stu podjednostek są w stanie tworzyć struktury trójwymiarowe. Powstawanie tych złożonych form jest konieczne, by cząsteczka RNA zyskała zdolności katalityczne i była w stanie przeprowadzać niektóre reakcje chemiczne. Wykonany eksperyment jest pierwszym, który potwierdza doświadczalnie możliwy mechanizm powstania pierwszych katalizatorów biologicznych. Ich obecność jest uznawana za czynnik niezbędny do funkcjonowania organizmów żywych, co może oznaczać, że włoscy naukowcy odkryli właśnie prawdopodobny mechanizm powstania zalążków życia na Ziemi.
  9. Po raz pierwszy w historii naukowcy potwierdzili, że fragmenty materiału genetycznego znalezionego na meteorycie nie pochodzą z Ziemi. Na meteorycie Murchinson, który spadł w Australii w 1969 roku znaleziono molekuły uracylu (to jedna z zasad azotowych wchodzących w skład RNA) oraz ksantyny (jedna z zasad purynowych). Uczeni z USA i Europy analizowali wspomniany materiał by sprawdzić, czy pochodzi on z kosmosu czy też doszło do zanieczyszczenia meteorytu po upadku na Ziemię. Badania wykazały, że materiał zawiera ciężką odmianę węgla, która mogła uformować się tylko poza naszą planetą. Doktor Zita Martins z Wydziału Nauk o Ziemi Imperial College London mówi, że odkrycie rzuca nowe światło na ewolucję życia na ziemi. Przed miliardami lat, gdy ono powstawało, nasza planeta była niezwykle często bombardowana przez meteoryty. To właśnie z nich mogły pochodzić zaczątki życia. Inny autor badań, profesor Mark Sephton z Imperial College London zauważa, że meteoryty zawierające materiał potrzebny do formowania się DNA i RNA mogą być rozpowszechnione w kosmosie. Bardzo więc prawdopodobne, że wiele z nich trafiło na planety, gdzie, tak jak na Ziemi, istniały odpowiednie warunki do powstania życia.
  10. Przy opisywaniu dziedziczenia przyjęło się traktować ten proces wyłącznie jako zależny od informacji zapisanej w DNA. Okazuje się jednak, że oprócz tego mechanizmu istnieje także druga grupa zjawisk, które kontrolują aktywność genów przekazywanych potomstwu. Jeden z mechanizmów decydujących o pozagenowym (lub, mówiąc fachowym językiem, epigenetycznym) dziedziczeniu został niedawno odkryty przez amerykańskich naukowców. Badacze z laboratorium Cold Springs Harbor rozszerzyli dostępną dotychczas wiedzę na temat sposobu, w jaki sposób upakowanie nici DNA w jądrze komórkowym wpływa na rozwój komórek potomnych. Nić ta jest nawinięta na białka zwane histonami, wraz z którymi tworzy strukturę zwaną chromatyną, przypominającą sznur z nawleczonymi koralami. Im silniej histony wiążą w danym miejscu z DNA, tym mniej aktywne są położone w tym miejscu nici geny. Takie "ciche" obszary genomu komórki nazywamy heterochromatyną. Tworzy ona około 10% całego genomu człowieka i "rozluźnia" swoją strukturę wyłącznie w czasie kopiowania DNA na potrzeby podziału komórkowego. Podczas replikacji materiału genetycznego dochodzi do powielenia nie tylko samej jego sekwencji, lecz także miejsc, w których powstaje heterochromatyna. Oznacza to, że nawet bliźnięta o identycznej informacji genetycznej mogą wykazywać inną ekspresję genów z powodu zjawisk epigenetycznych. Dotychczas nie było jasne, w jaki sposób dochodzi do "zapamiętywania" przez potomne komórki sposobu, w który histony łączą się z określonymi odcinkami DNA. Jako model do badań posłużyły drożdże piekarskie, bardzo często stosowane w tego typu eksperymentach. Odkryto, że za zjawiskiem stoi mechanizm tzw. interferencji RNA (za jego odkrycie przyznano w 2006 Nagrodę Nobla). Polega on na bardzo precyzyjnym wyłączaniu aktywności określonych genów za pomocą krótkich nici RNA. Okazało się, że do syntezy RNA odpowiedzialnego za interferencję dochodzi wyłącznie podczas podziału komórek, kiedy to cała nić DNA (a więc także heterochromatyna) na krótki okres rozluźnia się i staje się aktywna. Właśnie przez ten krótki czas dochodzi do syntezy RNA, które następnie reguluje proces powstawania struktury chromatyny. Badacze zauważyli jednocześnie, że bardzo podobny proces zachodzi u niektórych roślin. Odkryto bowiem, że pod wpływem zmiany temperatury dochodzi do zmiany nasilenia zjawiska interferencji RNA. Roślina musi przejść przez okres chłodu, by z nasiona zaczął powstawać zalążek nowego pędu (właśnie w tym czasie dochodzi do zmian w ekspresji genów pod wpływem zmiany temperatury). Proces ten widać doskonale w przypadku niektórych zbóż, zwanych ozimymi. Artykuł na temat szczegółów odkrycia został opublikowany w najnowszym numerze czasopisma Current Biology.
  11. Zanim zacznie wypełniać swoją funkcję, każde białko w organizmie żywym musi przejść proces składania. Proces ten jest zależny od ogromnej liczby sił działających na każdy atom białka oraz jego otoczenia, a także od warunków, w których zachodzi synteza. Na podobnej zasadzie zachodzi składanie niektórych cząsteczek RNA, które w pewnych sytuacjach może pełnić funkcje podobne do protein. Jednym z rodzajów takiego RNA są odkryte w 2002 roku tzw. "riboswitches". Są to cząsteczki tworzące złożone struktury 3D, zdolne do wiązania się z DNA i w ten sposób do włączania lub wyłączania aktywności genów (stąd ich nazwa). Niedawno, po raz pierwszy w historii, udało się zaobserwować na żywo proces składania takiej struktury. Odkrycia dokonali badacze z Uniwersytetu Stanforda. Naukowcy użyli maszyny zwanej "pułapką optyczną". Jest to złożony system pozwalający na rozciągnięcie pofałdowanego i "poskładanego" RNA do postaci wyprostowanej. Sama cząsteczka RNA została zmodyfikowana: do jej końców przyczepiono wielkie (oczywiście w porównaniu do cząsteczki RNA - ich rzeczywista wielkość to zaledwie 1 mikrometr) "żagle" wyłapujące światło, wykonano je z polistyrenu, oraz dodatkowo do jednego końca dodano kawałek DNA. Służył on wyłącznie do przedłużenia badanej nici. Po oświetleniu laserem polistyrenowych końcówek RNA rozciąga się, a po wyłączeniu strumienia światła zachowuje się jak sprężyna: powraca do pierwotnego, z góry ustalonego i optymalnego energetycznie, kształtu. Dzięki obserwacjom zmiany odległości pomiędzy "żaglami", dokonywanym w mikroskopie optycznym, można było ocenić, w jakiej kolejności powstawały pętle w strukturze RNA. Dodatkowo, znając ilość energii potrzebnej do "wyprostowania" RNA, można ustalić, jaka jest energia odwrotnego procesu, czyli składania, oraz czas niezbędny do jego zajścia. To pierwsza tak dokładna analiza tworzenia się struktur trójwymiarowych w makrocząsteczkach. To bezprecedensowe odkrycie otwiera nowy rozdział w badaniu składania makrocząsteczek, takich jak białka czy kwasy nukleinowe. Do tej pory za najskuteczniejszą (co wcale nie znaczy, że wystarczająco dobrą) metodę ich badania uznawano symulacje komputerowe. Te ostatnie były jednak tworzone w oparciu o obliczanie wartości przybliżonych, które pogarszały jakość wyników. Przy okazji tego odkrycia warto zaznaczyć, że również na polu bioinformatyki Uniwersytet Stanforda może się pochwalić bardzo zaawansowanymi badaniami. Naukowcy z tej uczelni od kilku lat udoskonalają algorytmy pozwalające obliczyć proces składania białek, wykorzystując moc obliczeniową komputerów rozsianych po całym świecie. Rozsyłają do internautów biorących udział w projekcie porcje danych do obliczenia, a następnie zbierają ich wyniki i tworzą w ten sposób "molekularne mapy" składania białek. Chętni do wzięcia udziału w projekcie znajdą dalsze informacje na ten temat na stronach Folding@home.
  12. Rodzina wirusów wywołujących całą gamę chorób, od przeziębienia poczynając, na polio kończąc, może prawdopodobnie infekować mózg i systematycznie go uszkadzać — donoszą badacze z Mayo Clinic w Minnesocie. Nasze studium sugeruje, że wywołana wirusem utrata pamięci akumuluje się w ciągu życia danej jednostki, doprowadzając ostatecznie do mających znaczenie kliniczne deficytów pamięciowych — poinformował Charles Howe, który opisał odkrycia całego zespołu na łamach magazynu Neurobiology of Disease. Grupa wirusów, o której mowa, to tzw. pikornawirusy. Rodzina Picornaviridae obejmuje ok. 200 gatunków wirusów RNA. Większość z nich jest dla człowieka chorobotwórcza. Rocznie infekują one ok. 1 mld osób. Uważamy, że pikornawirusy przemieszczają się w obrębie mózgu i wywołują różnego rodzaju uszkodzenia. Poliowirusy powodują na przykład paraliż — tłumaczy Howe. Mogą one uszkadzać rdzeń kręgowy oraz różne części mózgu odpowiedzialne za funkcje motoryczne. Działo się tak w przypadku wirusa mysiego, którym się zajmowaliśmy. Uszkadzał on ponadto obszary mózgu odpowiedzialne za pamięć. Naukowcy z Mayo Clinic zarażali myszy wirusem TMEV (Theiler’s murine encephalomyelitis virus), który przypomina ludzkiego poliowirusa. Zainfekowane gryzonie miały później kłopoty z poruszaniem się po labiryntach. Niektóre osobniki przejawiały tylko nieznaczne problemy, podczas gdy inne w ogóle nie umiały sobie poradzić z tego typu zadaniem. Po śmierci zbadano mózgi zwierząt i połączono stopień uszkodzenia hipokampa z obserwowanymi zaburzeniami uczenia i pamięci. Jeden z pikornawirusów szczególnie często powoduje uszkodzenia ośrodkowego układu nerwowego. Jest to popularny w Azji enterowirus 71. Wywołuje on zapalenie mózgu, które w wielu przypadkach prowadzi do śpiączki, a następnie śmierci. Nasze odkrycia wskazują, że zakażenie pikornawirusami powoduje zużycie rezerw poznawczych [angażuje zapasowe obszary mózgu — przyp. red.], zwiększając prawdopodobieństwo upośledzenia funkcjonowania intelektualnego w miarę starzenia się organizmu. Sądzimy, że łagodne postaci utraty pamięci i funkcji poznawczych o nieznanej etiologii mogą być w rzeczywistości wynikiem kumulujących się latami uszkodzeń hipokampa, pojawiających się wskutek nawracających zakażeń pikornawirusami. Wiadomo także, że inne wirusy, np. wirus HIV czy wirus opryszczki, zabijają komórki mózgu.
×
×
  • Dodaj nową pozycję...