Znajdź zawartość
Wyświetlanie wyników dla tagów ' mięsień' .
Znaleziono 2 wyniki
-
Z każdym skutecznym lekarstwem związana jest historia jego wynalezienia. Badania takie jak nasze, stanowią glebę, z którego narodzą się nowe leki, mówi profesor Christopher Vakoc z Cold Spring Harbor Laboratory. Przez sześć ostatnich lat uczony i jego zespół pracowali nad zamianą komórek atakującego dzieci mięsaka w... prawidłowo funkcjonujące komórki mięśniowe. I w końcu się udało. Mięśniakomięsak prążkowanokomórkowy (RMS) to nowotwór złośliwy tkanek miękkich, atakujący przede wszystkim dzieci. Należy od do mięsaków, nowotworów pochodzących z tkanki łącznej. Ich leczenie wymaga często chemioterapii, zabiegu chirurgicznego oraz radioterapii. Jest szczególnie uciążliwe u dzieci. Vakoc i jego koledzy stwierdzili, że gdyby udało się zamienić komórki nowotworowe w zdrowe prawidłowo funkcjonujące, zaoszczędziliby dzieciom i ich rodzinom wiele cierpienia. Od wielu lat wiadomo, że w wyniku mutacji może dojść do fuzji dwóch genów kodujących czynniki transkrypcyjne PAX3 i FOXO1. Powstały w ten sposób gen fuzyjny PAX3-FOXO1 koduje białko, które upośledza miogenezę, czyli różnicowanie się komórek mięśniowych. W ten sposób pojawia się mięsak prążkowanokomórkowy. Naukowcy najpierw opracowali nową technikę genetycznych badań przesiewowych, a następnie wykorzystali technologie edycji genów do poszukiwania czynników, które współpracują z PAX3-FOXO1 przy blokowaniu miogenezy. Okazało się, że, że elementem, którego poszukują jest białko NF-Y. Gdy zablokowali jego działanie, doszło do zadziwiającej przemiany. Komórki nowotworowe po prostu zamieniły się w mięśnie. Straciły wszystkie cechy nowotworu. Przełączyły się z komórek, które po prostu chcą się namnażać, w komórki, których celem jest kurczenie się. Cała ich energia, całe zasoby, zostały skierowane na skurcze, nie mogły rozprzestrzeniać się w sposób niekontrolowany, mówi Vakoc. Szczegóły badań zostały opisane na łamach PNAS. Zaburzenie istniejącej zależności pomiędzy NF-Y a RMS wywołuje całą reakcję łańcuchową, która prowadzi do przemiany komórek nowotworowych. A na mięśniakomięsaku prążkowanokomórkowym się nie kończy. Naukowcy uważają, że ich technikę można będzie zastosować do innych rodzajów mięsaków, a może i w ogóle innych rodzajów nowotworów. "Można za jej pomocą wziąć pod lupę każdy nowotwór i sprawdzić, co powoduje, że staje się nowotworem. To może być kluczowym elementem do opracowania nowej terapii", stwierdza Vakoc. To nie pierwsze tego typu osiągnięcie Vakoca. Przed dwoma laty udało mu się zmienić komórki mięsaka Ewinga w zdrową tkankę. Prace te mogą doprowadzić do pojawienia się terapii różnicujących nowotworów. « powrót do artykułu
-
- mięśniakomięsak prążkowanokomórkowy
- nowotwór
-
(i 2 więcej)
Oznaczone tagami:
-
Opracowany w Kalifornii nowatorski biomateriał po dożylnym podaniu zmniejsza stan zapalny i pomaga w regeneracji uszkodzonych tkanek i komórek. Został on już przetestowany na gryzoniach i większych zwierzętach, udowadniając swoją skuteczność w regeneracji tkanki po ataku serca. Jego twórcy opracowali też prototypową metodę wykorzystania biomateriału w urazach mózgu oraz nadciśnieniu płucnym. Nasz biomateriał regeneruje tkankę od wewnątrz. To nowe podejście do inżynierii regeneracyjnej, mów profesor Karen Christman z University of California San Diego, której zespół stworzył biomateriał. Uczona dodaje, że testy bezpieczeństwa i skuteczności biomateriału na ludziach mogą rozpocząć się w ciągu 1-2 lat. Każdego roku w Polsce zawału serca doświadcza około 80 tysięcy osób. Po zawale w mięśniu sercowym pojawiają się blizny, które pogarszają jego funkcjonowanie i mogą prowadzić do kolejnych chorób. Już podczas wcześniejszych badań zespół Christman opracował hydrożel zbudowany z macierzy pozakomórkowej, który można było podać przez cewnik w mięsień sercowy, co pobudzało wzrost nowych komórek i naprawę tkanki mięśnia sercowego. Udaną pierwszą fazę testów klinicznych przeprowadzono w 2019 roku. Jednak metoda wprowadzania żelu – bezpośrednia injekcja w mięsień – powodowała, że leczenie można było zastosować nie wcześniej niż tydzień po zawale. Wcześniejsze wprowadzanie igły groziło dodatkowymi uszkodzeniami mięśnia. Dlatego też naukowcy z San Diego postanowili opracować metodę, którą będzie można stosować bezpośrednio po zawale. A to oznaczało konieczność stworzenia biomateriału, który można by wprowadzać do naczyń krwionośnych w sercu podczas przeprowadzania innych procedur ratunkowych, lub też podawać dożylnie. Potrzebowaliśmy biomateriału, który można dostarczyć do trudno dostępnych miejsc, postanowiliśmy więc wykorzystać naczynia krwionośne, mówi doktor Martin Spang. Jedną z zalet nowego żelu jest fakt, że poprzez naczynia krwionośne równomiernie dociera on do całej uszkodzonej tkanki. Żel podawany przez cewnik pozostawał w miejscu podania i nie rozprzestrzeniał się. Christman i jej grupa rozpoczęli więc pracę od żelu opracowanego przed kilku laty, który dowiódł swojego bezpieczeństwa w 2019 roku. Uczeni wiedzieli, że nadaje się on do podawania dożylnego, jednak cząstki hydrożeli były zbyt duże, by spełnić swoje zadanie. Naukowcy wpadli więc na pomysł, by hydrożel odwirować w centryfudze. W ten sposób oddzielono zbyt duże cząstki, pozostawiając te w skali nano. Tak uzyskany materiał poddano dializie za pomocą błony półprzepuszczalnej, filtrowaniu i sterylizacji, a następnie liofilizacji. Uzyskano w ten sposób proszek, który po dodaniu wody do injekcji zmienia się w hydrożel gotowy do wstrzyknięcia. Materiał przetestowano na mysim modelu zawału serca. Naukowcy spodziewali się, że hydrożel przeniknie z naczyń krwionośnych do tkanki, gdyż podczas ataku serca pojawiają się szczeliny pomiędzy komórkami śródbłonka naczyń. Okazało się, że żel nie tylko przenika do tkanki, ale również zamyka szczeliny pomiędzy komórkami naczyń krwionośnych i przyspiesza ich gojenie, zmniejszając stan zapalny. Taki sam efekt zaobserwowano podczas testów na świniach. Naukowcy wysunęli i z powodzeniem przetestowali hipotezę, że ich hydrożel pomaga również w szczurzym modelu stanu zapalnego po urazie mózgu i w nadciśnieniu płucnym. Planują więc przeprowadzenie kolejnych badań w tym kierunku. Większość przeprowadzonych przez nas badań dotyczy serca, jednak widzimy, że istnieje możliwość leczenia w ten sposób innych trudno dostępnych tkanek, mówi Spang. Profesor Christman oraz startup Ventrix Bio, którego jest współzałożycielką, chcą teraz postarać się o zgodę FDA (Agencja ds. Żywności i Leków) na rozpoczęcie testów na ludziach. Mogłyby się one rozpocząć w ciągu 1-2 lat. Łatwa do zastosowania metoda naprawy mięśnia sercowego pomogłaby w uniknięciu komplikacji i rozwoju schorzeń pojawiających się po zawale. « powrót do artykułu
-
- hydrożel
- zawał serca
-
(i 1 więcej)
Oznaczone tagami: