Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' matematyka' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 8 wyników

  1. Ukrainka Maryna Wiazowska jest drugą w historii kobietą, która otrzymała Medal Fieldsa. To odpowiednik Nagrody Nobla dla matematyków. Obok Wiazowskiej tegoroczną nagrodę przyznano June'owi Hughowi z Princeton University, Jamesowi Maynardowi z University of Oxford,  oraz Hugo Duminil-Copinowi z Instytut Zaawansowanych Studiów Naukowych pod Paryżem. Wiazowska pracuje w Szwajcarskim Federalnym Instytucie Technologii w Lozannie (EPFL). Zajmuje się teorią liczb i jest najbardziej znana z prac nad problemem upakowania sfer w 8- i 24-wymiarowej przestrzeni. To niezwykle złożone zagadnienie, w ramach którego matematycy próbują odpowiedzieć na pytanie, jak upakować sfery, by były jak najbliżej siebie. W 1611 roku Johannes Kepler postulował – ale nie przedstawił na to dowodu – że w przestrzeni trójwymiarowej najwłaściwszą formą jest ułożenie sfer w piramidę. Udało się to udowodnić dopiero w 1998 roku. Jednak w przypadku przestrzeni 4- i więcej wymiarowej, niewiele wiemy o tym problemie. To olbrzymia luka w naszej wiedzy. Niemal zawstydzająca dla ludzkości, stwierdził Henry Cohn z MIT. Ukraińska matematyczka zajęła się przestrzeniami 8- i 24-wymiarowymi, gdyż – jak tłumaczy – to szczególne wymiary, a rozwiązanie jest szczególnie eleganckie. Wiazowska opracowała nowe techniki matematyczne, które pochodzą z teorii liczb oraz teorii symetrii w ośmiu wymiarach. Biorąc pod uwagę, jak słabo rozumiemy inne wymiary, to naprawdę cud, że Marynie udało się zrobić to tak dobrze, dodaje Cohn. Eksperci przyznają, że dzięki pracom ukraińskiej matematyczki udało się pokonać przeszkody, które na całe lata zahamowały postęp w tej dziedzinie. Wiazowska jest absolwentką Narodowego Uniwersytetu im. Tarasa Szewczenki w Kijowie. Po uzyskaniu licencjatu kontynuowała studia na Uniwersytecie Technicznym w Kaiserslautern, a doktorat obroniła w 2013 roku na Uniwersytecie w Bonn. Trzy lata później zaakceptowała ofertę pracy na stanowisku wykładowcy w EPFL i od tej pory tam pracuje. "Maryna była wyróżniającym się naukowcem, gdy dołączyła do nas przed sześciu laty. Jednak jeszcze bardziej imponujący jest jej rozwój od tego czasu", stwierdził prezydent EPFL Martin Vetterli. Ukrainka jest laureatką kilku innych nagród. W 2016 roku otrzymała Nagrodę Salem, w 2017 Europejską Nagrodę w Kombinatoryce czy Clay Research Award, a w roku 2019 Nagrodę Fermata. Rok później została laureatką Nagrody Europejskiego Towarzystwa Matematycznego. Teraz przyszedł czas na Medal Fieldsa. Pierwszą kobietą nagrodzoną Medalem Fieldsa była irańska matematyczka Maryam Mirzakhani, która otrzymała go w 2014 roku. Niezwykle uzdolniona uczona zmarła trzy lata później w wieku 40 lat na raka piersi. « powrót do artykułu
  2. Polskim matematykom udało się rozwiązać ważny problem dotyczący symetrii wszystkich symetrii. Był to nierozwiązany od kilku dekad problem – jedno z największych wyzwań geometrycznej teorii grup. Wyniki pracy dr. Marka Kaluby (Uniwersytet im. Adama Mickiewicza i Karlsruher Institut fur Technologie), prof. Dawida Kielaka (Uniwersytet Oksfordzki) i prof. Piotra Nowaka (Instytut Matematyczny PAN) ukazały się w jednym z najbardziej prestiżowych pism matematycznych Annals of Mathematics. Rozwiązaliśmy pewien od dawna otwarty problem, pokazując, że pewna nieskończona rodzina obiektów algebraicznych – grup – ma własność T, a więc, że jest bardzo niekompatybilna z geometrią Euklidesa – podsumowuje Nowak. A dr Marek Kaluba dodaje: Dzięki naszym badaniom zrozumieliśmy pewne geometryczne aspekty grup kodujących symetrie wszystkich symetrii. Obiekty z własnością T, których dotyczyły badania, mają bardzo egzotyczne właściwości geometryczne (nie daje się ich zrealizować jako symetrii w geometrii euklidesowej). Wydaje się to oderwane od rzeczywistości? Na pozór tak. Ale wiedza o tej skomplikowanej własności T znalazła już zastosowanie. Pozwala choćby konstruować ekspandery – grafy z dużą ilością połączeń wykorzystywane m.in. w algorytmach streamingujących. A takie algorytmy odpowiadają m.in. za wskazywanie trendów na Twitterze. Pytanie czy grupy, które badaliśmy, mają taką własność T, pojawiło się w druku w latach 90. Kiedy byłem doktorantem, to był to problem, o którym słyszałem na co drugim wykładzie i konferencji z teorii grup – streszcza Piotr Nowak. A Dawid Kielak dodaje: Nasz wynik wyjaśnia działanie pewnego algorytmu. To algorytm Product Replacement używany, kiedy chce się losować elementy spośród ogromnych zbiorów np. liczących więcej elementów niż liczba cząsteczek we Wszechświecie. Ten algorytm istnieje od lat 90. i działa dużo lepiej, niż można się było spodziewać. Nasz artykuł tłumaczy, dlaczego on tak dobrze działa – mówi prof. Kielak. I dodaje: informatyka to nowa fizyka. To, co nas otacza, to nie tylko cząsteczki, ale coraz częściej - również algorytmy. Naszym zadaniem jako matematyków będzie więc i to, by zrozumieć algorytmy, pokazywać, dlaczego one działają albo nie; dlaczego są szybkie lub wolne. Naukowcy w swoim matematycznym dowodzie wspomogli się obliczeniami komputerowymi. Używanie komputerów do dowodzenia twierdzeń w matematyce nie uchodziło dotąd raczej za eleganckie. Społeczność matematyków teoretycznych zwykle kręciła nosem na komputery. Tu jednak tu takie nowoczesne podejście spisało się wyjątkowo dobrze. Komputer wykonał tylko żmudną robotę. Ale nie zastąpił logiki. Naszym pomysłem było bowiem to, żeby zastosować redukcję nieskończonego problemu do problemu skończonego – mówi prof. Kielak. A dr Marek Kaluba dodaje: zredukowaliśmy nasz problem do problemu optymalizacyjnego, a następnie użyliśmy do tej optymalizacji standardowych narzędzi – algorytmów, których inżynierowie używają do projektowania elementów konstrukcyjnych. Komputer dostał więc zadanie, by znaleźć macierz spełniającą określone kryteria. Maszyna tworzyła więc rozwiązanie, sprawdzała, jak dobrze ona spełnia ono zadane warunki i stopniowo poprawiała tę macierz, żeby dojść do jak najmniejszego poziomu błędu. Pytanie brzmiało tylko, jak niewielką skalę błędu jest w stanie uzyskać. Okazało się, że błąd komputera w ostatnim przybliżeniu był bardzo, bardzo niewielki. Obliczenie komputera pozwalało więc – przy użyciu odpowiednich matematycznych argumentów – uzyskać ścisły dowód. Macierz, którą stworzył komputer, miała 4,5 tysiąca kolumn i 4,5 tysięcy wierszy. Marek Kaluba tłumaczy zaś, że problem, nad którym pracowali, był początkowo zbyt duży, żeby go rozwiązać dysponując nawet superkomputerem. Wobec tego użyliśmy wewnętrznych symetrii tego problemu, aby ułatwić poszukiwania rozwiązania – mówi. I tłumaczy, że analogiczne podejście będzie można stosować i w rozwiązywaniu innych problemów z zakresu optymalizacji obiektów, które cechują się geometrycznymi symetriami. Te symetrie (w algebraicznej formie) będzie można zaobserwować również w problemie optymalizacyjnym i użyć ich do redukcji złożoności – mówi dr Kaluba. I dodaje: Chociaż więc zajmujemy się abstrakcyjną matematyką, to chcemy, by nasze oprogramowanie było przydatne również w inżynierskich zastosowaniach. « powrót do artykułu
  3. Przed ośmiu laty ze świata matematyki nadeszła sensacyjna wiadomość – pojawił się dowód na prawdziwość hipotezy ABC. Jeśli jest on prawdziwy, to mamy do czynienia z największym osiągnięciem matematycznym bieżącego wieku. Autor dowodu, Shinichi Mochizuki z Uniwersytetu w Kioto, udostępnił olbrzymią 600-stronicową pracę na ten temat. I musiał czekać aż 8 lat nim ktokolwiek był w stanie ją przeanalizować. Teraz dwoje innych matematyków w końcu przeanalizowało dowód i praca Michizukiego zostanie opublikowana w piśmie Publications of the Research Institute for Mathematical Sciences (RIMS). To pismo, którego głównym redaktorem jest sam Mochizuki, a jest ono wydawane przez instytut, w którym pracuje. O publikacji pracy Mochizukiego poinformowano na konferencji prasowej. Analizę dowodu przeprowadzili dwaj matematycy z RIMS, Masaki Kashiwara i Akio Tamagawa. Zdaniem Kashiwary, publikacja będzie miała olbrzymi wpływ na matematykę. Jak informowaliśmy w 2015 roku, Mochizuki – bardzo szanowany matematyk, którego prace cieszą się uznaniem – miał wówczas żal do kolegów, że mimo upływu 3 lat, nikt nie przeanalizował całości dowodu. Minęły kolejne 3 lata i w roku 2018 dwoje innych matematyków stwierdziło, że znalazło błąd w pracy Japończyka. Wielu uznało to za pocałunek śmierci dla jego dowodu. Obecna decyzja o publikacji dowodu w recenzowanym piśmie prawdopodobnie nie zmieni opinii większości matematyków. Myślę, że od 2018 roku opinia społeczności matematyków nie uległa zbytniej zmianie, mówi Kiran Kedlaya, teoretyk liczb z Uniwersytetu Kalifornijskiego w San Diego, który przez lata próbował przegryźć się przez dowód Mochizukiego. Wstrzymam się z opinią do publikacji pracy, gdyż pomogą pojawić się nowe informacje, stwierdził z kolei Edward Frenkel z Uniwersytetu Kalifornijskiego w Berkeley. Hipoteza ABC to stwierdzenie, że dla każdej liczby x > 1 istnieje co najwyżej skończenie wiele rozwiązań typu ABC, spełniających warunek P(A, B, C) > x. Bardzo głęboko dotyka ono natury liczb. Dotychczas podczas badania hipotezy ABC udało się m.in. udowodnić wielkie twierdzenie Fermata, co było jednym z największych dokonań matematyki w XX wieku. Jeśli Mochizukiemu rzeczywiście udało się udowodnić hipotezę ABC, będzie to miało kolosalne znaczenie dla całej matematyki. Gdy pracujesz nad teorią liczb, nie możesz zignorować hipotezy ABC. Dlatego właśnie wszyscy teoretycy chcą poznać efekt pracy Michizukiego - mówił przed 4 laty matematyk Vesselin Dimitrov z Yale University. Sam Dimitrov wykazał wówczas, że jeśli Mochizuki ma rację, to z jego dowodu można będzie wyciągnąć wiele ważnych wniosków oraz niezależnie udowodnić Wielkie Twierdzenie Fermata. Dowód Mochizukiego bazuje na jego wcześniejszych prowadzonych przez dekadę pracach, kiedy to Mochizuki samotnie rozwijał nowe niezwykle abstrakcyjne koncepcje matematyczne. Nic zatem dziwnego, że praca Japończyka jest bardzo hermetyczna i niewielu ekspertów próbuje się z nią zmierzyć. W grudniu 2015 roku w Oxfordzie zorganizowano konferencję poświęconą dowodowi. Mochizuki nie brał w niej udziału, jednak za pośrednictwem Skype'a odpowiadał na pytania zgromadzonych. Konferencja ta była bardzo ważnym wydarzeniem. Przed nią jedynie 3 matematyków zdecydowało się na próbę przeanalizowania dowodu Mochizukiego. Po konferencji ich liczba wzrosła do około 10 specjalistów. Od czasu opublikowania przez Mochizukiego jego pracy, odbyło się sporo konferencji naukowych jej poświęconych. Specjaliści z całego świata mówili, że dokonali częściowego postępu w zrozumieniu pracy Japończyka, ale przyznawali, że minie wiele lat, zanim zostanie ona w całości przeanalizowana. Wielu ekspertów krytykowało uczonego z Kioto, że nie próbuje lepiej komunikować się ze środowiskiem i wytłumaczyć swoich koncepcji. Niezwykle skryty Mochizuki konsekwentnie odmawia udzielania wywiadów i bardzo rzadko daje się namówić na udział w konferencjach naukowych. Przez lata krążyły też plotki, że już wkrótce praca Mochizukiego zostanie wydana w Publications of the Research Institute for Mathematical Sciences. Spotkało się to z krytyką. W 2017 roku matematyk Peter Woit z Columbia University stwierdził, że zaakceptowanie pracy Mochizukiego do publikacji byłoby bezprecedensowym wydarzeniem w matematyceg, gdyż szanowane pismo publikowałoby dowód na dobrze znaną hipotezę w sytuacji, gdy większość ekspertów, którzy ten dowód analizowali, nie była w stanie go zrozumieć. Jednak plotki o szybkiej publikacji okazały się tylko plotkami. Jakiś czas później sytuacja zmieniła się na niekorzyść przedstawionego dowodu. Dwóch znanych matematyków, Peter Scholtze w Uniwersytetu w Bonn i Jacob Stix z Uniwersytetu Goethego we Frankfurcie udostępnili pracę, w której informowali o odkryciu błędu w jednym z kluczowych elementów dowodu. Wagi ich stwierdzeniu dodawał fakt, że Scholze, autorytet od teorii liczb, niedługo później został uhonorowany „matematycznym Noblem”, czyli Medalem Fieldsa. Mochizuki zareagował na pracę Scholtzego i Stixa stwierdzając, że nie zrozumieli dowodu. Jednak większość środowiska matematycznego uznała, że sprawa jest jasna i Mochizuki nie dostarczył dowodu. Decyzja o publikacji pracy Mochizukiego na nowo wywołała spory. Scholtze podtrzymuje swoją opinię, Stix zaś odmówił skomentowania całej sytuacji. Akio Tamagawa, jeden z recenzentów pracy Mochizukiego mówi, że sam dowód nie został zmieniony w reakcji na krytykę Scholtze'a i Stixa. Jednak w publikacji znajdzie się dodatkowe wyjaśnienie. Volker Mehrmann, prezydent Europejskiego Towarzystwa Matematycznego, które w imieniu RIMS wydaje Publications of the Research Institute for Mathematical Sciences, mówi, że jeśli autorzy po prostu odrzucili krytykę, to będzie to źle świadczyło i o nich i o samym Mochizukim. Sytuacja jest bardziej skomplikowana, niż się wydaje. Jak bowiem zauważył pewien ekspert, jeśli najlepsi matematycy na świecie próbują coś zrozumieć i nie są w stanie, to jak ktokolwiek inny może wyrobić sobie własne zdanie? Warto też zauważyć, że matematycy często publikują swoje prace w pismach, których sami są wydawcami. Nie stanowi to naruszenia żadnych zasad o ile autorzy prac nie ingerują w proces ich recenzowania, mówi Hiraku Nakajima z Uniwersytetu Tokijskiego. Opinię taką potwierdza Mehrmann. Kashiwara podkreśla, że Mochizuki nie brał udziału w recenzowaniu swojej pracy i nie uczestniczył w żadnym posiedzeniu redakcyjnym, na którym była ona omawiana. Dodaje, że już wcześniej w piśmie tym ukazywały się prace członków zespołu matematycznego. Praca Mochizukiego została zatwierdzona do publikacji 5 lutego. Nie wiadomo, kiedy się ukaże. To bardzo obszerna praca. Wydamy specjalny numer jej poświęcony, więc nie wiemy, ile czasu to zajmie, mówi Kashiwara. W świecie matematyki publikacja w szanowanym recenzowanym piśmie nie zamyka dyskusji. Dowód Mochizukiego zostanie uznany dopiero wówczas, gdy społeczność matematyków dojdzie do zgody na jego temat. To zaś może zająć całe lata po oficjalnej publikacji. « powrót do artykułu
  4. Brakthrough Prize Foundation ustanowiła nagrodę na cześć Marjam Mirzachani, jedynej kobiety, która zdobyła Medal Fieldsa. Maryam Mirzakhani New Frontiers Prize o wartości 50 000 USD będzie przyznawana matematyczkom, które w ciągu dwóch lat przed otrzymaniem nagrody zrobiły doktorat i mogą pochwalić się wyjątkowymi osiągnięciami. Marjam Mirzachani urodziła się w 1977 roku w Teheranie. Jej talent matematycznym ujawnił się w szkole średniej. W 1994 roku zdobyła złoty medal na międzynarodowej olimpiadzie matematycznej. Pięć lat później ukończyła matematykę na Uniwersytecie Technologicznym Szarif, w roku 2004 uzyskała doktorat na Uniwersytecie Harvarda, a w 2009 roku została profesorem matematyki na Uniwersytecie Stanforda. W 2014 roku, jako pierwsza i jedyna dotychczas kobieta otrzymała Medal Fieldsa. Ten „matematyczny Nobel” przyznawany jest raz na cztery lata wyróżniającym się matematykom, którzy nie ukończyli 40. roku życia. Od 1936 roku wyróżniono nim zaledwie 60 osób. Mirzachani otrzymała go za badania dynamiki i geometrii powierzchni Riemanna i przestrzeni moduli na tych powierzchniach. O jej wyjątkowym osiągnięciu pisaliśmy szczegółowo przed pięcioma laty. W 2013 u Mirzachani wykryto raka piersi. Matematyczka zmarła w 2017 roku. « powrót do artykułu
  5. Gdy przed 5 miesiącami profesor Andrew Booker z University of Bristol nieco przy okazji rozwiązał równanie diofantyczne x3+y3+z3=33, postanowił pójść za ciosem i znaleźć rozwiązanie dla ostatniej nierozwiązanej liczby z zakresu 1–100. Równania diofantyczne zostały nazwane od Diofantosa z Aleksandrii, który przed 1800 laty zaproponował podobne równanie. W 1954 roku naukowcy z University of Cambridge rozpoczęli poszukiwania rozwiązania dla równań x3+y3+z3=k, dla k z zakresu od 1 do 100. Matematycy, którzy próbują je rozwiązać wiedzą, że liczby, z których po podzieleniu przez 9 zostaje reszta 4 lub 5 nie mogą być rozwiązane z pomocą równań diofantycznych. To oznacza, że z zakresu 1–100 nie można rozwiązać 22 liczb, ale dla 78 powinno istnieć rozwiązanie. Jeszcze do niedawna nie znano rozwiązania dla liczb 33 i 42. W kwietniu profesor Booker znalazł rozwiązanie dla 33 oraz stwierdził, że rozwiązania dla 42 należy szukać wśród liczb większych niż 1016. Uczony postanowił pójść za ciosem i poprosił o pomoc profesora matematyki Andrew Sutherlanda z MIT, który specjalizuje się w masywnych obliczeniach równoległych. Obaj uczeni wykorzystali urządzenie, które przypomina usługi planetarnego przetwarzania danych „Deep Thought” opisane w „Autostopem przez galaktykę”, którzy dał odpowiedź na wielkie pytanie o życie, wszechświat i całą resztę. Do znalezienia odpowiedzi na równanie x3+y3+z3=42 wykorzystano bowiem Charity Engine, czyli sieć ponad 500 000 domowych pecetów, których użytkownicy udostępniają ich moc obliczeniową w czasie, gdy maszyny nie są używane. Rozwiązanie, które wymagało ponad miliona godzin obliczeń wygląda następująco (-80538738812075974)3+(80435758145817515)3+(12602123297335631)3=42. Tym samym znamy już wszystkie możliwe rozwiązania równań diofantycznych dla liczb z zakresu 1–100. Profesor Booker stwierdził, że czuje ulgę. W tej grze nie można być pewnym, że znajdzie się odpowiedź. [...] Mogliśmy znaleźć odpowiedź po kilku miesiącach, ale mogło się też okazać, że przez kolejne 100 lat nikt jej nie znajdzie. « powrót do artykułu
  6. Profesor matematyki Andrew Booker z University of Bristol rozwiązał zagadkę matematyczną sprzed 64 lat. Zagadka brzmi: jak wyrazić liczbę 33 za pomocą sumy trzech liczb podniesionych do potęgi trzeciej. Równanie wygląda w następujący sposób: x3+y3+z3=33 i jest przykładem równania diofantycznego. Nazwano je tak od imienia greckiego matematyka Diofantosa z Aleksandrii, który przed 1800 lat zaproponował podobne równania. Na przykład jeśli k=8, to równanie wygląda następująco 23+13+(-1)3=8. Matematycy, którzy mierzą się z równaniami diofantycznymi, wiedzą na przykład, że liczby, z których po podzieleniu przez 9 pozostaje reszta 4 lub 5, nie mogą być rozwiązane za pomocą równań diofantycznych. To wyklucza 22 liczby z przedziału od 1 do 100. Jednak 78 pozostałych liczb powinno mieć rozwiązania. Dotychczas nie udało się znaleźć rozwiązania dla 33 i 42. Booker chciał znaleźć nowe rozwiązania dla wszystkich liczb mniejszych niż 100, dla których rozwiązania można znaleźć. Stworzył więc algorytm komputerowy, którego zadaniem było rozwiązanie równania x3+y3+z3=k, a który mógł za „x”, „y” oraz „z” podstawiać liczby o wartości do 1016. Uczony przyznaje, że nie spodziewał się, że znajdzie też pierwsze w historii rozwiązanie dla k=33. Równanie wygląda następująco: (8.866.128.975.287.528)3 + (–8.778.405.442.862.239)3 + (–2.736.111.468.807.040)3 = 33 Zatem z zakresu od k=1 po k=100 pozostała jeszcze jedna nierozwiązana liczba – 42. Dzięki pracy Bookera wiadomo, że do jej rozwiązania trzeba użyć liczb większych niż 1016. « powrót do artykułu
  7. Przy wyższych temperaturach kobiety lepiej wypadają w zadaniach matematycznych i słownych. U mężczyzn jest dokładnie na odwrót (w ich przypadku zależność między temperaturą a osiągami jest jednak słabiej zaznaczona). Badanie sugeruje, że płeć jest ważnym czynnikiem nie tylko przy określaniu wpływu temperatury na komfort, ale i na produktywność czy osiągi poznawcze. Jest udokumentowane, że kobiety wolą w pomieszczeniach wyższe temperatury niż mężczyźni. Dotąd sądzono jednak, że to wyłącznie kwestia osobistych preferencji. Nasz zespół ustalił, że nie chodzi tylko o to, czy czujesz się dobrze, czy nie i że temperatura wpływa na osiągi w kluczowych dziedzinach: w matematyce, zadaniach słownych i we wkładanym wysiłku - opowiada prof. Tom Chang z Uniwersytetu Południowej Kalifornii. W eksperymencie wzięło udział 543 studentów z WZB Berlin Social Science Center. W ciągu sesji ustawiano różne zakresy temperaturowe (od ok. 16 do 33 stopni Celsjusza). Ochotnicy mieli wykonywać 3 typy zadań (zachętą do pracy była nagroda pieniężna): 1) matematyczne, polegające na dodaniu bez kalkulatora pięciu dwucyfrowych liczb, 2) słowne, przy którym z zestawu 10 liter należało utworzyć w zadanym czasie jak najwięcej słów i 3) test świadomego myślenia (ang. Cognitive Reflection Test, CRT). Naukowcy wykryli znaczącą zależność między temperaturą otoczenia i wynikami osiąganymi w zadaniach matematycznym i słownym. Ani u kobiet, ani u mężczyzn temperatura nie miała wpływu na wyniki testu CRT. Jedną z najbardziej zaskakujących rzeczy jest to, że nie uciekaliśmy się wcale do skrajnych temperatur. Nie chodzi o trzaskający mróz czy upał. Znaczące zróżnicowanie osiągów widać nawet przy temperaturach rzędu 60-75 stopni Fahrenheita [15,5-24 stopni Celsjusza], co jest w końcu stosunkowo normalnym zakresem wartości. Autorzy artykułu z pisma PLoS ONE podkreślają, że poprawa osiągów poznawczych kobiet w wyższych temperaturach wydaje się napędzana głównie wzrostem liczby podawanych odpowiedzi. Po części można to interpretować jako skutek wzrostu wkładanego wysiłku. U mężczyzn spadek osiągów poznawczych przejawiał się mniejszą liczbą zgłaszanych odpowiedzi. Wzrost osiągów kobiet jest większy (daje się też precyzyjniej oszacować) niż spadek osiągów u mężczyzn. Amerykańsko-niemiecki zespół podkreśla, że uzyskane wyniki rzucają nieco światła na nieustającą walkę o ustawienia termostatu w biurach. Wg naukowców, by zwiększyć produktywność w mieszanych płciowo zespołach, ustawienia temperatury powinny być wyższe niż przy obecnych standardach. « powrót do artykułu
  8. Zapach kawy poprawia wyniki osiągane w matematyce. Naukowcy z Instytutu Technologicznego Stevensa odkryli, że woń kawy pomaga ludziom osiągać lepsze wyniki w analitycznej części testu GMAT (Graduate Management Aptitude Test). Nie chodzi tylko o to, że kawowy zapach pomagał ludziom lepiej wypadać w zadaniach analitycznych, co samo w sobie byłoby już interesujące. [Istotne jest to, że czując kawę] badani uważali, że lepiej im pójdzie, a my wykazaliśmy, że to oczekiwanie przynajmniej częściowo odpowiadało za wyższe wyniki - opowiada prof. Adriana Madzharov. Oznacza to więc, że mimo nieobecności kofeiny, wyczuwanie zapachu kawy miało skutek podobny do wypicia naparu, co sugeruje efekt placebo woni kawy. W ramach eksperymentu ok. 100 studentów zarządzania rozwiązywało test z algebry składający się z 10 zadań. Ochotników podzielono na 2 grupy: jedna pracowała w pomieszczeniu, w którym czuć było zapach kawy, a druga w kontrolnym pokoju bez woni. Okazało się, że pierwsza grupa uzyskiwała znacząco lepsze wyniki. Chcąc sprawdzić, czy poprawę myślenia można po części wyjaśnić oczekiwaniami, że zapach kawy zwiększy czujność i w ten sposób polepszy wyniki, spytano kolejne osoby (ponad 200) o przekonania związane z różnymi woniami. Ludzie uważali, że w porównaniu do zapachu kwiatowego lub braku woni, w obecności zapachu kawy będą bardziej czujni i naenergetyzowani. Spodziewali się, że ekspozycja na zapach kawy poprawi też ich osiągnięcia w zadaniach umysłowych. Wyniki sugerują zatem, że oczekiwania co do uzyskiwanych wyników można wyjaśnić przekonaniem, że sama woń kawy sprawia, że ludzie są bardziej czujni/sprawni umysłowo. W przyszłości Madzharov chce sprawdzić, czy kawowe zapachy wywierają podobny efekt placebo w przypadku innych typów zadań, np. rozumowania werbalnego. Wg niej, spostrzeżenie, że woń kawy działa na rozumowanie analityczne jak placebo, znajdzie sporo zastosowań praktycznych, w tym biznesowych. « powrót do artykułu
×
×
  • Dodaj nową pozycję...