Znajdź zawartość
Wyświetlanie wyników dla tagów ' helisa' .
Znaleziono 2 wyniki
-
Bez cienia wątpliwości wykazaliśmy, że w żywych komórkach powstają poczwórne helisy DNA. To każe nam przemyśleć biologię DNA, mówi Marco Di Antonio z Imperial College London (CL). Naukowcy po raz pierwszy w historii znaleźli poczwórne helisy DNA w zdrowych komórkach ludzkiego organizmu. Dotychczas takie struktury znajdowano jedynie w niektórych komórkach nowotworowych. Udawało się je też uzyskać podczas eksperymentów w laboratorium. Teraz okazuje się, że poczwórna helisa DNA może występować też w żywych, zdrowych komórkach ludzkiego ciała. Dotychczas struktury takiej, zwanej G-kwadrupleks (G4-DNA), nie zauważono w żywych komórkach, gdyż technika ich wykrywania wymagała zabicia badanej komórki. Teraz naukowcy z Uniwersytetu w Cambridge, ICL oraz Uniwersytetu w Leeds opracowali nowy znacznik fluorescencyjny, który przyczepia się go G4-DNA w żywych komórkach. To zaś pozwala na śledzenie formowania się tej struktury i badania roli, jaką odgrywa ona w komórce. Odkrycie poczwórnej helisy w komórkach, możliwość prześledzenia jej roli i ewolucji otwiera nowe pole badań nad postawami biologii i może przydać się w opracowaniu metod leczenia wielu chorób, w tym nowotworów. Teraz możemy obserwować G4 w czasie rzeczywistym w komórkach, możemy badać jej rolę biologiczną. Wiemy, że struktura ta wydaje się bardziej rozpowszechniona w komórkach nowotworowych. Możemy więc sprawdzić, jaką odgrywa ona rolę, spróbować ją zablokować, co potencjalnie może doprowadzić do pojawienia się nowych terapii, stwierdzają autorzy najnowszych badań. Naukowcy sądzą, że do formowania się kwadrupleksu dochodzi po to, by czasowo otworzyć helisę, co ułatwia różne procesy, jak np. transkrypcja. Wydaje się, że G4 jest częściej powiązana z genami biorącymi udział w pojawianiu się nowotworów. Jeśli struktura ta ma związek z chorobami nowotworowymi, to być może uda się opracować leki blokujące jej formowanie się. Już wcześniej ten sam zespół naukowcy wykorzystywał przeciwciała i molekuły, które były w stanie odnaleźć i przyczepić się do G4. Problem jednak w tym, że środki te musiały być używane w bardzo wysokich stężeniach, co groziło zniszczeniem DNA. To zaś mogło prowadzić do formowania się G4, zatem technika, której celem było wykrywanie G4 mogła de facto powodować jego tworzenie się, zamiast znajdować to, co powstało w sposób naturalny. Czasem naukowcy potrzebują specjalnych próbników, by obserwować molekuły wewnątrz żywych komórek. Problem w tym, że próbniki te mogą wchodzić w interakcje z obserwowanym obiektem. Dzięki mikroskopii jednocząsteczkowej jesteśmy w stanie obserwować próbniki w 1000-krotnie mniejszym stężeniu niż wcześniej. W tym przypadku próbnik przyczepia się do G4 w ciągu milisekund, nie wpływa na jej stabilność, co pozwala na badanie zachowania G4 w naturalnym środowisku bez wpływu czynników zewnętrznych. Dotychczasowe badania wykazały, że G4 forumuje się i znika bardzo szybko. To sugeruje, że jest to tymczasowa struktura, potrzebna do wypełnienia konkretnych funkcji, a gdy istnieje zbyt długo może być szkodliwa dla komórek. « powrót do artykułu
-
Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmers obalili teorię mówiącą, że obie nici DNA są utrzymywane przez wiązania atomów wodoru. Okazuje się, że kluczem są siły hydrofobowe, nie atomy wodoru. Odkrycie to może mieć duże znaczenie dla medycyny i innych nauk biologicznych. Helisa DNA składa się z dwóch nici zawierających molekuły cukru i grupy fosforanowe. Pomiędzy obiema nićmi znajdują się zasady azotowe zawierające atomy wodoru. Dotychczas sądzono, że to wiązania atomów wodoru utrzymują razem obie nici. Jednak uczeni z Chalmers wykazali właśnie, że kluczem do utrzymania razem nici jest hydrofobowe wnętrze molekuł zanurzonych w środowisku składającym się głównie z wody. Zatem mamy tutaj hydrofilowe otoczenie i hydrofobowe molekuły odpychające otaczającą je wodę. Gdy hydrofobowe molekuły znajdują się w hydrofilowym środowisku, grupują się razem, by zmniejszyć swoją ekspozycję na wodę. Z kolei wiązania wodorowe, które dotychczas postrzegano jako elementy utrzymujące w całości podwójną helisę DNA, wydają się mieć więcej wspólnego z sortowaniem par bazowych, zatem z łączniem się helisy w odpowiedniej kolejności. Komórki chcą chronić swoje DNA i nie chcą wystawiać ich na środowisko hydrofobowe, które może zawierać szkodliwe molekuły. Jednocześnie jednak DNA musi się otwierać, by było użyteczne. Sądzimy, że przez większość czasu komórki utrzymują DNA w środowisku wodny, ale gdy chcą coś z DNA zrobić, na przykład je odczytać, skopiować czy naprawić, wystawiają DNA na środowisko hydrofobowe, mówi Bobo Feng, jeden z autorów badań. Gdy na przykład dochodzi do reprodukcji, pary bazowe odłączają się i nić DNA się otwiera. Enzymy kopiują obie strony helisy, tworząc nową nić. Gdy dochodzi do naprawy uszkodzonego DNA, uszkodzone części są wystawiane na działanie hydrofobowego środowiska i zastępowane. Środowisko takie tworzone jest przez proteinę będącą katalizatorem zmiany. Zrozumienie tej proteiny może pomóc w opracowaniu wielu leków czy nawet w metodach leczenia nowotworów. U bakterii za naprawę DNA odpowiada proteina RecA. U ludzi z kolei proteina Rad51 naprawia zmutowane DNA, które może prowadzić do rozwoju nowotworu. Aby zrozumieć nowotwory, musimy zrozumieć, jak naprawiane jest DNA. Aby z kolei to zrozumieć, musimy zrozumieć samo DNA. Dotychczas go nie rozumieliśmy, gdyż sądziliśmy, że helisa jest utrzymywana przez wiązania atomów wodoru. Teraz wykazaliśmy, że chodzi tutaj o siły hydrofobowe. Wykazaliśmy też, że w środowisku hydrofobowym DNA zachowuje się zupełnie inaczej. To pomoże nam zrozumieć DNA i proces jego naprawy. Nigdy wcześniej nikt nie umieszczał DNA w środowisku hydrofobowym i go tam nie badał, zatem nie jest zaskakujące, że nikt tego wcześniej nie zauważył, dodaje Bobo Feng. Szwedzcy uczeni umieścili DNA w hydrofobowym (w znaczeniu bardzo zredukowanej koncentracji wody) roztworze poli(tlenku etylenu) i krok po kroku zmieniali hydrofilowe środowisko DNA w środowisko hydrofobowe. Chcieli w ten sposób sprawdzić, czy istnieje granica, poza którą DNA traci swoją strukturę. Okazało się, że helisa zaczęła się rozwijać na granicy środowiska hydrofilowego i hydrofobowego. Bliższa analiza wykazała, że gdy pary bazowe – wskutek oddziaływania czynników zewnętrznych – oddzielają się od siebie, wnika pomiędzy nie woda. Jako jednak, że wnętrze DNA powinno być suche, obie nici zaczynają przylegać do siebie, wypychając wodę. Problem ten nie istnieje w środowisku hydrofobowym, zatem tam pary bazowe pozostają oddzielone. « powrót do artykułu
- 7 odpowiedzi
-
- hydrofobowe
- środowisko
-
(i 5 więcej)
Oznaczone tagami: