Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' UV'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Naukowcy z Uniwersytetu Yale odkryli w ludzkim genomie hiperhotspoty, czyli miejsca, które są o wiele wrażliwsze na promieniowanie ultrafioletowe (UV). Ponieważ ekspozycja na UV to główna przyczyna nowotworów skóry, skryning hiperhotspotów może stanowić nową metodę oceny jednostkowego ryzyka wystąpienia tych chorób. Autorzy artykułu z pisma PNAS podkreślają, że w hiperhotspotach aż 170-krotnie częściej pojawiają się cyklobutanowe dimery pirymidynowe (ang. cyclobutane pyrimidine dimer, CPD); porównań dokonywano dla średniej genomowej. Amerykanie wyjaśniają, że mogą one działać jak cele na tarczach strzelniczych, które "przyciągają" uszkadzające promieniowanie. Zespół zauważył, że najczęściej hiperhotspoty występują w melanocytach, z których wywodzi się czerniak złośliwy. Myśleliśmy, że uszkodzenia DNA i mutacje, które wywołują nowotwory to rzadkie i losowe zdarzenia. Nasze wyniki pokazują jednak, że przynajmniej w przypadku nowotworów skóry, w genomie istnieją specyficzne cele, które tylko czekają, aż zadziała na nie UV - opowiada Douglas Brash. By je wykryć, naukowcy zaprojektowali metodę znakowania miejsc z CPD. Później wykorzystali wysoko wydajną technikę sekwencjonowania, która pozwoliła zmapować tagi w genomie. Ku swojemu zaskoczeniu, Amerykanie stwierdzili, że hiperhotspoty były nieproporcjonalnie często zlokalizowane w pobliżu genów, a zwłaszcza genów kodujących białka posiadające zdolność wiązania RNA (ang. RNA-binding proteins, RBPs); warto dodać, że RBPs pełnią funkcje regulatorowe i determinują wybór miejsca splicingowego przez spliceosom (splicing, inaczej składanie genów, to usunięcie intronów, sekwencji niekodujących, i połączenie eksonów, sekwencji kodujących, z prekursorowego mRNA). Przy ekspozycji na UV na poziomie oparzeń słonecznych promieniowanie ultrafioletowe podziała na hiperhotspoty. Człowiek doświadczy specyficznych, wywołanych UV, zaburzeń wzrostu komórki. Nie będzie to zjawisko nieprzewidywalne/zachodzące losowo, w dodatku tygodnie czy lata później, jak wcześniej sądzono. Wyjaśniając, czemu natura nie wyeliminowała hiperhotspotów, Brash zaznacza, że może tak być dlatego, że komórki używają ich do wyczuwania środowiska. Istnienie hiperhotspotów sugeruje, że mutacje wywołane przez karcynogen (UV bądź inny czynnik) nie są całkowicie losowe. Badanie akademików z Yale wskazuje na nowe sposoby określania ryzyka nowotworów skóry. Jak wiadomo, najważniejsza jest ocena wcześniejszego wystawienia na oddziaływanie UV. Obecnie lekarzom brakuje obiektywnych sposób pomiaru, zazwyczaj polegają więc na pamięci pacjentów. Gdyby dało się pobrać niewielką próbkę skóry i zbadać hiperhotspoty, można by uzyskać prawdziwe dane nt. uszkodzenia DNA przez uprzednie oparzenia. Osoby z grupy wysokiego ryzyka podlegałyby zaś stałemu monitoringowi. « powrót do artykułu
  2. Ustalono, w jaki dokładnie sposób promieniowanie ultrafioletowe wpływa na mechaniczną integralność warstwy rogowej naskórka. Przemysł kosmetyczny to wielomiliardowy biznes. Specjaliści ciągle wypróbowują nowe dodatki do filtrów słonecznych, które mają pozwolić lepiej chronić skórę. Dotąd [...] nikt [jednak] należycie nie sprawdzał, jak UV wpływa ma mechaniczną integralność skóry - podkreśla prof. Guy K. German z Uniwersytetu w Binghamton. Wydłużona ekspozycja na słońce powoduje fotouszkodzenia, które odpowiadają m.in. za wczesne pojawienie się zmarszczek. Choć ultrafiolet (UV) jest uznawany za najbardziej uszkadzający, naukowcy nie rozstrzygnęli, który z jego zakresów jest pod tym względem najgorszy. Autorzy raportu z Journal of the Mechanical Behavior of Biomedical Materials zajęli się oceną biomechanicznych zjawisk związanych z fotostarzeniem. Badali wpływ różnych zakresów promieniowania UV na warstwę rogową naskórka (łac. stratum corneum, SC). Amerykanie posłużyli się próbkami skóry z kobiecych piersi; wybrano właśnie ten rejon, bo rzadko ma on kontakt ze słońcem. SC wystawiano na oddziaływanie promieniowania ultrafioletowego o różnych długościach fali: UVA (365 nm), UVB (302 nm) lub UVC (265 nm). Dawka UV wynosiła do 4000 J/cm2. German i doktorant Zachary W. Lipsky zauważyli, że wpływając na białka korneodesmosomów, które pomagają komórkom przylegać do siebie (chodzi o desmogleinę 1), UV osłabia adhezję w warstwie rogowej naskórka. To z tego powodu oparzenia słoneczne prowadzą do łuszczenia się skóry. Generalnie pochłanianie UV rośnie z przestrzennym rozproszeniem desmogleiny 1 z połączeń międzykomórkowych korneocytów. Bazując na tych początkowych odkryciach, Lipsky i German badają wpływ promieniowania UV na głębsze warstwy skóry. Panowie przekonują, że ochrona skóry jest ważna bez względu na porę roku. Próbujemy uświadomić wszystkim, że filtry słoneczne nie tylko chronią przed nowotworami skóry, ale i pomagają zachować integralność skóry, zabezpieczając m.in. przed infekcjami. SC to najbardziej zewnętrzna warstwa naskórka, dlatego musimy ją chronić przed bakteriami i innymi mikroorganizmami, które próbują się dostać do naszych organizmów. « powrót do artykułu
  3. Kiedy w 2017 r. biolodzy stwierdzili, że brazylijskie żabki Brachycephalus ephippium i B. pitanga nie słyszą swoich własnych zawołań, zaczęto poszukiwać sygnałów wzrokowych, którymi mogłyby się posługiwać. Gdy przypadkowo oświetlono je ultrafioletem, okazało się, że głowa i grzbiet intensywnie fluoryzują. Człowiek widzi fluorescencyjne wzorce wyłącznie pod lampą UV. W naturze, jeśli są one widoczne dla innych zwierząt, mogą stanowić sygnał komunikacyjny dla przedstawicieli tego samego gatunku albo wzmocnienie [pomarańczowego] ubarwienia, ostrzegającego drapieżniki przed toksycznością - opowiada dr Sandra Goutte z filii Uniwersytetu Nowojorskiego w Abu Zabi. By wskazać na funkcję świecenia, trzeba przeprowadzić dalsze badania zachowania żabek [z lasu atlantyckiego Mata Atlântica] oraz ich wrogów. Autorzy artykułu z pisma Scientific Reports wyjaśniają, że fluoryzujące wzorce są tworzone przez płytki kostne, znajdujące się tuż pod bardzo cienką skórą. Silnie fluorescencyjny jest cały szkielet żabek, ale świecenie widać na zewnątrz tylko tam, gdzie warstwa tkanki nad kością jest bardzo mała (ma grubość ok. 7 mikrometrów). Międzynarodowy zespół wyjaśnia, że brak melanoforów oraz cienka skóra pozwalają UV przenikać przez tkankę i wzbudzać fluorescencję w płytkach kostnych. Szkielety B. ephippium i B. pitanga porównywano ze spokrewnionymi z Ischnocnema parva. Okazało się, że ich kości są wyjątkowo fluorescencyjne. B. ephippium i B. pitanga prowadzą dzienny tryb życia. W ich naturalnym habitacie UV lub bliskie UV składowe światła dziennego mogą wywoływać fluorescencję na poziomie wykrywalnym przez pewne gatunki. « powrót do artykułu
  4. Nocą assapany (Glaucomys), gryzonie z rodziny wiewiórkowatych, fluoryzują w UV na różowo. Fluorescencja w UV występuje w różnym natężeniu u samic i samców wszystkich gatunków z tego rodzaju - asspanów południowych (Glaucomys volans), assapanów północnych (G. sabrinus) i G. oregonensis. Na razie nie wiadomo, do czego jest to potrzebne... Jon Martin, profesor leśnictwa w Northland College w Wisconsin, prowadził eksperyment w przydomowym ogródku (posługiwał się latarką UV). Oświetlał różne porosty, mchy i inne rośliny i sprawdzał, które fluoryzują. Wtedy właśnie okazało się, że przy karmniku dla ptaków znajduje się assapan. Gdy naukowiec skierował na niego latarkę, ujrzał piękny róż. Powstał zespół do badania tego zjawiska. Znaleźli się w nim Martin, jego studentka Allison Kohler oraz dwoje naukowców z Northland College - Paula Anich i Erik Olson. Martin poprosił Kohler, by została kierowniczką projektu i opracowała protokół badawczy. Przyglądałam się licznym okazom z kolekcji [Minnesockiego Muzeum Nauki]. Z biegiem lat zebrano tam bardzo dużo wypchanych asspanów i każdy po oświetleniu UV jarzył się w pewnym stopniu na różowo - opowiada Kohler. Potem naukowcy udali się do Muzeum Historii Naturalnej w Chicago po kolejne assapany. W sumie autorzy publikacji z Journal of Mammalogy obejrzeli ponad 100 okazów z różnych stanów. Wszystkie potwierdzały "różową teorię". Nie inaczej było przy badaniu dodatkowych 5 żywych zwierząt. Fluorescencja w UV występowała u G. volans, G. sabrinus i G. oregonensis. Porównania do wiewiórek szarych i sosnowiórek czerwonych wykazały, że róż jest charakterystyczny dla rodzaju Glaucomys. Na razie nie wiadomo, do czego assapany wykorzystują tę fluorescencję, ale w grę wchodzą komunikacja i kamuflaż. "Mogą się komunikować z przedstawicielami własnego gatunku. Może to również być sygnał związany z godami". Inna hipoteza jest taka, że to cecha chroniąca przed drapieżnikami, która pozwala się wtopić w wysycone ultrafioletem tło. Kohler zamierza kontynuować badania, bo mogą one pomóc w ochronie assapanów i innych gatunków. « powrót do artykułu
×
×
  • Create New...