Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'ekspresja genu'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Do tej pory wydawało się, że różnice w budowie i funkcjonowaniu mózgów ssaków płci męskiej i żeńskiej kształtują się jeszcze podczas życia płodowego. Wpływać na to miały geny z chromosomów X oraz Y, a także hormony oddziałujące na rozwijający się organizm. Okazuje się jednak, że zachowanie matki w stosunku do potomstwa odgrywa nie mniejszą rolę. Anthony Auger z University of Wisconsin-Madison wyjaśnia, że szczurzyce spędzają dużo czasu na lizaniu i pielęgnacji synów, co wg autorów wcześniejszych badań, umożliwia prawidłowy rozwój genitaliów. Jego zespół chciał jednak sprawdzić, co się stanie, gdy podobnym zabiegom zostaną poddane młode samiczki. Okazało się, że pod wpływem głaskania zmniejszyła się, w porównaniu do samic pozbawionych karesów, liczba receptorów estrogenowych w podwzgórzu i była ona podobna jak u samców. Później naukowcy stwierdzili, że u dopieszczonych samic wzorce metylacji DNA przypominały te widywane u samców. Geny receptorów estrogenowych ulegały silniejszej metylacji, a ponieważ przyłączenie grup -CH3 zmniejsza ekspresję genów, spadała liczba receptorów żeńskich hormonów. W wielu wypadkach metylacja bywa permanentna, dlatego zwykłe głaskanie przez matkę może wywoływać zmiany dające o sobie znać przez całe życie. Nie wiadomo, czy zachowanie ludzkiej matki wobec nowo narodzonego dziecka ma również taki wpływ. Celia Moore z University of Massachusetts w Bostonie uważa, że najpierw należałoby sprawdzić, czy kobiety inaczej traktują synów i córki oraz czy ma to ewentualnie jakiś wpływ na rozwój mózgu. Płeć może nie być wyłącznie genami i hormonami.
  2. Badacze z Uniwersytetu Rochester zaprojektowali "genetyczną bombę", która umożliwia masową produkcję toksyn w komórkach nowotworowych. Co ważne, zdrowa tkanka pozostaje praktycznie nietknięta. Nowatorskie rozwiązanie wykorzystuje właściwości genu Rad51, którego podwyższona aktywność (ekspresja) w dzielących się szybko komórkach nowotworowych jest znana już od kilku lat. Naukowcy, prowadzeni przez dr Verę Gorbunovą, zmodyfikowali tę sekwencję, usuwając z niej fragmenty odpowiedzialne za ograniczane jej aktywności. Uzyskany w ten sposób gen wciąż był uruchamiany w intensywnie dzielących się komórkach nowotworowych, lecz, pozbawiony "hamulca", podlegały w nich znacznie silniejszej ekspresji. Komórki zdrowe niemal w ogóle nie korzystają z Rad51, ponieważ intensywność podziałów komórkowych w zdrowej tkance jest wielokrotnie niższa. Aktywność Rad51 w typowym nowotworze jest około pięciokrotnie wyższa, niż w zdrowej tkance, lecz dzięki usunięciu sekwencji ograniczającej ekspresję tego genu udało się uzyskać różnice aktywności rzędu kilku, a nawet kilkunastu tysięcy razy. Jak wykorzystać unikalną cechę zmodyfikowanego genu? Badacze z Rochester uznali, że najlepiej będzie połączyć ze sobą odpowiedni fragment Rad51 oraz sekwencję kodującą bakteryjną toksynę błoniczą, produkowaną przez bakterie z gatunku Corynebacterium diphteriae. Uzyskano w ten sposób gen, którego produktem była silna trucizna, lecz aktywował się on wyłącznie w komórkach nowotworowych, prowadząc do ich zniszczenia. Wstępne testy wykazały, że pomysł doskonale sprawdza się w praktyce. W warunkach laboratoryjnych udało się skutecznie zlikwidować komórki kilku nowotworów, m.in. włókniakomięsaka oraz raka piersi i raka szyjki macicy. Testy przeprowadzone równolegle na zdrowych komórkach nie wywołały w nich większych szkód. Obecnie badacze z Rochester pracują nad stworzeniem wirusa, który pozwoli na dostarczenie terapeutycznego genu do możliwie wielu komórek w żywym organizmie. Jeżeli się to uda i wydajność procesu będzie dostatecznie wysoka, być może pewnego dnia leczenie nowotworu będzie się ograniczało do prostych wstrzyknięć "genetycznej bomby". Zanim jednak stanie się to możliwe, konieczne będą wieloletnie badania.
  3. Dzięki zastosowaniu zestawu kamer oraz osiągnięć inżynierii genetycznej skonstruowano urządzenie umożliwiające jednoczesny pomiar aktywności genów oraz zachowań zwierzęcia. Stworzenie aparatu pozwoli na znaczną poprawę jakości badań nad wpływem wielu czynników na fizjologię zwierząt. Równoczesna obserwacja procesów w skali "mikro" (działania pojedynczych genów) oraz "makro" (zachowania zwierzęcia) otwiera zupełnie nowe możliwości wielu typów interakcji organizmów żywych z otoczeniem. Organizmem, który posłużył do wstępnych testów, była muszka owocowa , lecz autorzy metody - badacze z University of Southern California oraz Cambridge University - twierdzą, że do badań może posłużyć także wiele innych gatunków. Materiał genetyczny muszki zmodyfikowano w taki sposób, by równocześnie z badanymi genami aktywował się także inny, niewystępujący u tego owada naturalnie. Koduje on zielone białko fluorescencyjne (ang. Green Fluorescent Protein - GFP) - związek bardzo prosty do wykrycia dzięki intensywnie zielonemu świeceniu w reakcji na oświetlenie za światłem niebieskim. Otaczający zwierzę system kamer pozwala nie tylko na detekcję fluorescencji oraz pomiar jej intensywności, będący odzwierciedleniem aktywności genu, lecz także na śledzenie ruchów muszki w przestrzeni. Możemy korelować ze sobą zachowanie oraz niektóre geny, a także poszukiwać genów, które mogą być za te zachowania odpowiedzialne - tłumaczy korzyści płynące z opracowanej technologii jeden z jej autorów, magistrant Dhruv Grover. Dzięki wykorzystaniu zespołu "szybkich" kamer, wykonujących do 60 zdjęć na sekundę, obserwacji można dokonywać w czasie rzeczywistym. Dotychczas mierzenie aktywności genu z taką precyzją było poza zasięgiem. Zdaniem Grovera, opracowana technologia ma ogromny potencjał. Jej piękno polega na tym, że GFP możemy sprzęgać z dowolnym genem - możemy go śledzić w czasie, możemy też patrzeć na jego ekspresję. To znacznie prostsze od patrzenia przez mikroskop i korzystania z usług magistranta, który siedzi [w laboratorium], wykonuje zdjęcia raz na parę godzin i obserwuje ekspresję genu. To po prostu działa samo z siebie.
  4. Naukowcy z nowojorskiego Yeshiva University zaprezentowali technikę, pozwalającą na niezwykle czułą analizę aktywności genów pojedynczej komórki. Osiągnięcie tak wielkej precyzji badania pozwoli na przeprowadzenie wyjątkowo dokładnych badań nad wieloma procesami zachodzącymi w naszych organizmach. Opracowana metoda służy do wykrywania cząsteczek mRNA - nośnika informacji genetycznej pozwalającego na wytworzenie określonego produktu (białka lub RNA mogącego pełnić w organizmie różne funkcje) na podstawie informacji zapisanej w DNA. Cząsteczki mRNA powstają dzięki "przepisaniu" (transkrypcji) sekwencji DNA, zaś sekwencja samego mRNA może np. posłużyć jako instrukcja, według której syntetyzowana jest cząsteczka białka. Aby zidentyfikować wyłącznie cząsteczki mRNA powstające na bazie sekwencji zapisanej w poszukiwanym genie, badacze zastosowali technikę fluorescencyjnej hybrydyzacji in situ (ang. fluorescent in-situ hybridization - FISH). Została ona opracowana 26 lat temu, a jednym z naukowców pracujących nad jej stworzeniem był dr Robert Singer, który pracował także nad najnowszą jej modyfikacją. Analizy FISH są możliwe dzięki krótkim cząsteczkom DNA wyznakowanym barwnikiem fluorescencyjnym (stąd ich nazwa: sondy). Sekwencja sond jest dobrana w taki sposób, by łączyły się one wyłącznie z poszukiwanymi cząsteczkami mRNA. Po powstaniu odpowiednich połączeń i usunięciu cząsteczek niezwiązanych wystarczy oświetlić próbkę za pomocą lampy UV i zliczyć kolorowe punkty w obrazie mikroskopowym (patrz: zdjęcie). Choć technika fluorescencyjnej hybrydyzacji in situ jest znana od ponad ćwierć wieku, po raz pierwszy udało się wykonać z jej pomocą tak precyzyjny pomiar aktywności pojedynczego genu w pojedynczej komórce. Badanie aktywności genów może mieć niebagatelne znaczenie dla naukowców próbujących zrozumieć liczne procesy fizjologiczne oraz chorobowe zachodzące w naszych organizmach. Jak bardzo istotny jest technologiczny skok naprzód w dziedzinie badań z wykorzystaniem FISH? Prawdopodobnie najlepszej odpowiedzi udziela sam dr Singer: nasze studium z wykorzystaniem tej nowej techniki już teraz wygenerowało dostatecznie wiele nowych pomysłów, by zająć naszych studentów na 10 lat. Życzymy miłej i owocnej pracy! ;-)
×
×
  • Create New...