Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' Galaktyka'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 11 results

  1. Astronomowie odkryli czarną dziurę, która – jak się wydaje – przyczynia się do powstawania gwiazd w odległych od niej galaktykach. Jeśli odkrycie się potwierdzi, będzie to oznaczało, że zaobserwowano czarną dziurę rozpalającą gwiazdy w największej znanej nam odległości. Naukowcy z włoskiego Narodowego Instytutu Astrofizyki informują o czarnej dziurze, która powoduje powstawanie gwiazd w odległości miliona lat świetlnych od siebie. Po raz pierwszy obserwuję pojedynczą czarną dziurę, która powoduje powstawanie gwiazd w więcej niż jednej galaktyce. To fascynujące, że czarna dziura z jednej galaktyki może decydować o tym, co dzieje się w galaktykach oddalonych od niej o miliony bilionów kilometrów, mówi Roberto Gilli, główny autor badań. Włosi obserwowali supermasywną czarną dziurę znajdującą się w galaktyce oddalonej o 9,9 miliarda lat świetlnych od Ziemi. Sąsiaduje ona z co najmniej 7 innymi galaktykami. Już wcześniej naukowcy zaobserwowali dżet wysokoenergetycznych cząstek o długości około miliona lat świetlnych. Jego źródłem jest obserwowana czarna dziura. Włosi odkryli, że jeden z końców strugi otoczony jest gigantycznym bąblem gorącego gazu podgrzewanego wskutek interakcji wysokoenergetycznych cząstek z otaczającą materią. Uczeni sądzą, że rozszerzający się bąbel, przechodząc przez sąsiadujące galaktyki, może wytwarzać falę uderzeniową, która kompresuje zimny gaz i powoduje powstawanie gwiazd. Wszystkie objęte bąblem galaktyki znajdują się w odległości około 400 000 lat świetlnych od jego centrum. Naukowcy obliczają, że tempo formowania się gwiazd w tych galaktykach jest od 2 do 5 razy szybsze niż w podobnych im galaktykach znajdujących się w tej samej odległości od Ziemi. Znamy historię króla Midasa, który dotykiem zamieniał wszystko w złoto. Tutaj mamy przypadek czarnej dziury, która zamienia gaz w gwiazdy, a jej zasięg jest międzygalaktyczny, mówi współautor badań, Marco Mignoli. To wyjątkowe obserwacje. Dotychczas bowiem znajdowano czarne dziury, które zwiększały tempo formowania się gwiazd o 30% i oddziaływały na galaktyki znajdujące się w odległości nie większej niż 50 000 lat świetlnych od ich rodzimej galaktyki. « powrót do artykułu
  2. Przed dwoma tygodniami rozpoczęto testowanie nowego potężnego narzędzia, którego zadaniem jest stworzenie mapy milionów galaktyk oraz dokonanie pomiarów ich ruchu. Robotyczny instrument o nazwie DESI pozwoli astronomom na określenie ilości ciemnej energii oraz zachodzących w niej zmian. Dark Energy Spectroscopic Instrument (DESI) został zainstalowany w teleskopie znajdującym się w Kitt Peak National Observatory w Arizonie. Jego instalowanie zajęło specjalistom aż 18 miesięcy. DESI oficjalnie rozpocznie pracę na początku przyszłego roku. W idealnych warunkach instrument będzie rejestrował nawet 5000 galaktyk w ciągu 20 minut. Naukowcy spodziewają się, że w ciągu 5 lat pracy DESI zarejestruje światło z 35 milionów galaktyk i 2,4 miliona kwazarów. Tak wysoka wydajność jest możliwa dzięki zastosowaniu robotyki. Wewnątrz instrumentu umieszczono 5000 światłowodów oraz urządzenia do precyzyjnego pozycjonowania każdego z nich. Urządzenia te są w stanie w ciągu kilku minut ustawić wszystkie światłowody w predefiniowanej pozycji. DESI będzie zbierał konkretne długości fali światła z poszczególnych galaktyk, a astronomowie na tej podstawie określą, jak szybko oddalają się one od nas. Możliwe będzie też dokonanie pomiarów odległości każdej z galaktyk do Ziemi względem innych galaktyk. Lokalizacja galaktyk oraz ich względne odległości posłużą do stworzenia trójwymiarowej mapy wszechświata obejmującej przestrzeń w promieniu do 11 miliardów lat świetlnych. Dzięki pomiarom na temat tempa ruchu galaktyk astronomowie będą mogli ocenić ilość ciemnej energii, a jako że DESI dostarczy indywidualnych danych dla milionów galaktyk, możliwe będzie określenie ilości ciemnej energii w konkretnym miejscu i konkretnym czasie. To zaś pozwoli stwierdzić czy, zgodnie z założeniami współczesnej kosmologii, ilość ciemnej energii we wszechświecie jest stała czy też w jakiś sposób zmienia się w czasie. « powrót do artykułu
  3. Astronomowie obserwują ostatnie etapy łączenia się trzech supermasywnych czarnych dziur. Krążą one wokół siebie w centrum trzech galaktyk, do połączenia których dochodzi w odległości około miliarda lat świetlnych od Ziemi. Niezwykły taniec czarnych dziur specjaliści zauważyli wewnątrz obiektu SDSS J084905.51+111447.2. Obserwowaliśmy parę czarnych dziur, a gdy użyliśmy kolejnych technik [obrazowania rentgenowskiego o wysokiej rozdzielczości przestrzennej, obrazowania w bliskiej podczerwieni oraz spektroskopii optycznej – red.] znaleźliśmy ten niezwykły system, mówi główny autor badań, Ryan Pfeifle z George Mason University. Mamy tutaj najsilniejsze z dostępnych dowodów na istnienie systemu trzech aktywnych supermasywnych czarnych dziur. Badania wspomnianego systemu rozpoczęły się od jego obrazowania w świetle widzialnym za pomocą teleskopu Sloan Digital Sky Survey (SDSS) w Nowym Meksyku. Dane udostępniono w społecznościowym projekcie Galaxy Zoo, którego użytkownicy oznaczyli SDSS J084905.51+111447.2 jako miejsce, w którym właśnie dochodzi do łączenia się czarnych dziur. Naukowcy przeanalizowali więc dane zebrana przez teleskop kosmiczny Wide-field Infrared Survey Explorer (WISE). Pracuje on w podczerwieni i jeśli rzeczywiście w galaktyce dochodzi do łączenia się czarnych dziur, to powinien on zaobserwować co najmniej dwa źródła gwałtownego pochłaniania materii. Kolejne obserwacje potwierdziły podejrzenia. Chandra X-ray Observatory wykrył istnienie silnych źródeł promieniowania X, co wskazuje, że czarne dziury pochłaniają tam duże ilości pyłu i gazu. Podobne dowody zdobył Nuclear Spectroscopic Telescope Array (NuSTAR). Kolejne obrazowanie w świetle widzialnym przeprowadzone za pomocą SDSS i Large Binocular Telescope potwierdziły obecność trzech aktywnych czarnych dziur. Dzięki użyciu wielu instrumentów opracowaliśmy nową technikę identyfikowania potrójnych układów supermasywnych czarnych dziur. Każdy z tych teleskopów dostarczył nam nieco innych informacji o tym, co się tam dzieje. Mamy nadzieję, że za pomocą tej techniki znajdziemy więcej układów potrójnych, mówi Pfeifle. Naukowcy stwierdzili, że odległość pomiędzy każdą z czarnych dziur, a jej sąsiadami wynosi od 10 do 30 tysięcy lat świetlnych. Będzie ona malała, gdyż galaktyki, do których należą te dziury, łączą się, więc i czarne dziury są skazane na połączenie. Dzięki wykryciu przez LIGO fal grawitacyjnych pochodzących z łączenia się czarnych dziur, wiemy co nieco o tym, jak przebiega taki proces. Jednak łączenie się układu potrójnego wygląda prawdopodobnie nieco inaczej. Specjaliści podejrzewają, że obecność trzeciej dziury powoduje, iż dwie pierwsze łączą się znacznie szybciej. Istnienie układu potrójnego może pozwolić też na wyjaśnienie teoretycznego „problemu ostatniego parseka”. Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale powinny minąć się po orbicie hiperbolicznej. Musi istnieć mechanizm, który spowoduje, że zbliżą się do siebie. Najważniejszym takim mechanizmem jest dynamiczne tarcie. Gdy czarna dziura zbliża się do gwiazdy, gwiazda jest przyspieszana, a czarna dziura spowalniana. Mechanizm ten spowalnia czarne dziury na tyle, że tworzą powiązany ze sobą układ podwójny. Dynamiczne tarcie nadal działa, dziury zbliżają się do siebie na odległość kilku parseków. Jednak proces krążenia czarnych dziur wokół siebie powoduje, że w pobliżu zaczyna brakować materii. W końcu jest jej tak mało, że jej oddziaływanie nie wystarczy, by dziury się połączyły. Ostatecznie do połączenia się czarnych dziur mogłyby doprowadzić fale grawitacyjne, ale ich oddziaływanie ma znaczenie dopiero, gdy dziury zbliżą się do siebie na odległość 0,01–0,001 parseka. Wiemy jednak, że czarne dziury się łączą, pozostaje więc pytanie, co rozwiązuje problem ostatniego parseka, czyli co powoduje, że zbliżą się do siebie na tyle, iż utworzą jedną czarną dziurę. Obecność trzeciej czarnej dziury wyjaśniałaby, jaka siła powoduje, że czarne dziury się łączą. Nie można też wykluczyć, że w układach potrójnych dochodzi nie tylko do połączenia się dwóch czarnych dziur, ale i do wyrzucenia trzeciej z nich w przestrzeń kosmiczną. « powrót do artykułu
  4. Czarna dziura, która znajduje się w centrum naszej galaktyki, w ciągu zaledwie dwóch godzin zwiększyła swoją jasność 75-krotnie. Naukowcy sądzą, że Sagittarius A* była jeszcze jaśniejsza, nim zaczęli się jej przyglądać. Jeszcze nigdy w historii 20-letnich obserwacji nie zanotowano tak dużej jasności tej czarnej dziury. To jednocześnie największa zaobserwowana zmiana. Obserwacji dokonał Tuan Do z Keck Observatory. Początkowo sądził, że wyjątkowo jasny punkt, który pojawił się na odczytach to pobliska gwiazda S0-2, jednak szybko zdał sobie sprawę, że to co obserwuje, to rosnąca jasność czarnej dziury. To było dziwne. Nigdy wcześniej nie widziałem tak jasnej czarnej dziury. Może wpada w nią więcej gazu, przez co staje się bardziej jasna niż kiedyś?, zastanawia się uczony. W ubiegłym roku gwiazda S0-2 wędrowała w pobliżu Sagittariusa A*, co mogło zaburzyć gaz znajdujący się w okolicy i spowodowało, że więcej go trafia do dziury, a być może zwiększanie jasności jest związane z tajemniczą chmurą gazu i pyłu zwaną G2, którą zaobserwowano w 2014 roku. Już wówczas spodziewano się zwiększenia aktywności i fajerwerków, ale nic takiego nie nastąpiło. Astronomowie byli wówczas rozczarowani. Być może, jak mówi Do, coś opóźniło tę chmurę. Sagittarius A* ma wkrótce zostać zobrazowana przez Event Horizon Telescope. W kwietniu wykonał on pierwsze w historii ludzkości zdjęcie czarnej dziury. Była to M87. Gdy w końcu zobaczymy dokładniejszy obraz centralnej dziury Drogi Mlecznej będziemy mogli o niej więcej powiedzieć. Oczywiście obserwowane światło, które zwiększyło jasność, nie pochodzi z samej czarnej dziury, a z towarzyszącego jej dysku akrecyjnego. To dysk materii krążącej wokół czarnej dziury, który jest podgrzewany wskutek jej oddziaływania i zaczyna emitować promieniowanie elektromagnetyczne. To właśnie nagłe zwiększenie jego jasności zaobserwował Do. « powrót do artykułu
  5. Gdy Galileusz skierował swój pierwszy teleskop w kierunku Drogi Mlecznej, dostrzegł, że składa się ona z niezliczonej liczby gwiazd. Od tego czasu badania historii i własności Galaktyki pochłaniały wiele pokoleń naukowców. W najnowszym numerze amerykańskiego tygodnika Science zespół polskich astronomów z Obserwatorium Astronomicznego UW, pracujący w ramach projektu The Optical Gravitational Lensing Experiment (OGLE), prezentuje unikalną, trójwymiarową mapę Drogi Mlecznej. Mapa przedstawia precyzyjny obraz naszej Galaktyki i dostarcza wielu nowych informacji dotyczących budowy i historii systemu gwiazdowego, w którym mieszkamy. Od XVII wieku astronomowie zdawali sobie sprawę, że Ziemia, Słońce i inne planety z Układu Słonecznego wraz z miliardami gwiazd widocznych przez teleskopy tworzą naszą Galaktykę. Światło tych gwiazd, obserwowane z dala od świateł cywilizacji, zlewa się, przybierając kształt rozlanego na niebie mleka, tworząc Drogą Mleczną. Opisanie rzeczywistego kształtu oraz budowy i struktury Galaktyki na podstawie obserwacji pochodzących z jej wnętrza nie jest zadaniem łatwym. Astronomowie wyobrażają sobie Galaktykę jako typową galaktykę spiralną z tzw. poprzeczką, składającą się z centralnego zgrubienia zawierającego owalną poprzeczkę otoczonego płaskim dyskiem zbudowanym z gazu, pyłu i gwiazd. Dysk składa się z czterech ramion spiralnych, a jego średnica wynosi około 120 tys. lat świetlnych. Układ Słoneczny znajduje się wewnątrz dysku w odległości około 27 tys. lat świetnych od centrum Galaktyki. Dlatego gwiazdy dysku oglądane z tego miejsca wyglądają na niebie jak cienka, blada poświata – pas Drogi Mlecznej. Aktualna wiedza dotycząca budowy Galaktyki opiera się m. in. na zliczeniach gwiazd, radiowych badaniach rozmieszczenia cząsteczek gazu w Galaktyce, a także analizie obrazów innych galaktyk, które widzimy z zewnątrz. Jednak zawsze dotąd odległości do badanych obiektów mających opisać budowę Galaktyki wyznaczane były pośrednio oraz były mocno zależne od przyjętych modeli. Najdokładniejszą metodą poznania struktury Galaktyki byłoby więc wyznaczenie precyzyjnych odległości do dużej grupy gwiazd o podobnych własnościach, dzięki czemu zobaczylibyśmy bezpośrednio ich rozmieszczenie w Galaktyce w trzech wymiarach. Obiektami idealnymi do mapowania Drogi Mlecznej są stosunkowo młode (młodsze niż 250 mln lat) gwiazdy zwane cefeidami klasycznymi. Są to pulsujące nadolbrzymy, których jasność zmienia się w bardzo regularny sposób z okresem od kilkunastu godzin do kilkudziesięciu dni. Na podstawie okresu pulsacji możemy wyznaczyć jasność rzeczywistą cefeidy i porównując ją z jasnością obserwowaną gwiazdy obliczamy precyzyjnie jej odległość – objaśnia dr Dorota Skowron, liderka zespołu przygotowującego mapę Galaktyki, pierwsza autorka pracy. Pewnym utrudnieniem w uzyskaniu dokładnych wyników jest pochłanianie światła na drodze od gwiazdy do obserwatora ziemskiego, ale astronomowie radzą sobie z tym problemem przez wykonywanie obserwacji w zakresie promieniowania podczerwonego, gdzie pochłanianie jest bardzo małe. Odległości do cefeid można wyznaczyć z dokładnością lepszą niż 5% – dodaje. Unikatowa mapa Drogi Mlecznej Najnowsza mapa Galaktyki zespołu OGLE prezentowana w czasopiśmie Science powstała na podstawie danych dotyczących ponad 2400 cefeid. Większość z nich to nowo odkryte obiekty dzięki obserwacjom prowadzonym w ramach projektu OGLE, w Obserwatorium Las Campanas w Chile. Projekt OGLE to jeden z największych na świecie przeglądów fotometrycznych nieba, obserwuje regularnie ponad dwa miliardy gwiazd. Kolekcje różnorodnych typów gwiazd zmiennych, w tym cefeid z Galaktyki i sąsiednich Obłoków Magellana, należą do największych we współczesnej astrofizyce i są podstawą do różnorodnych badań Wszechświata – wyjaśnia kierownik projektu OGLE, prof. Andrzej Udalski. Skonstruowana na podstawie analizowanych cefeid mapa pokazuje rzeczywiste rozmieszczenie młodej populacji gwiazdowej w Galaktyce. Jest to pierwsza trójwymiarowa mapa stworzona na podstawie bezpośrednich odległości wyznaczonych do poszczególnych obiektów. Precyzyjnie wyznaczone odległości cefeid wypełniających dysk galaktyczny, aż po jego krańce, umożliwiają dokładną analizę budowy dysku galaktycznego. Słońce znajduje się około 50 lat świetlnych powyżej płaszczyzny dysku. Mapa pokazuje, że dysk galaktyczny jest płaski do odległości 25 tys. lat świetlnych od centrum Galaktyki, a w dalszych odległościach ulega zakrzywieniu (disk warp). Zakrzywienie dysku podejrzewano już wiele lat temu, ale dopiero teraz po raz pierwszy możemy użyć indywidualnych obiektów do badania jego kształtu w trzech wymiarach – wyjaśnia Przemek Mróz, doktorant UW, badający parametry dysku Galaktyki. Gwiazdy w zewnętrznych częściach dysku Drogi Mlecznej mogą być przesunięte nawet o 4,5 tys. lat świetlnych od płaszczyzny dysku wyznaczonej w centralnych rejonach Galaktyki. Zakrzywienie dysku może być spowodowane oddziaływaniami z innymi galaktykami, wpływem gazu międzygalaktycznego lub tzw. ciemnej materii. Dysk galaktyczny nie ma stałej grubości. Rozszerzanie dysku (disk flaring) zostało w przypadku młodej populacji gwiazd Galaktyki po raz pierwszy tak dokładnie scharakteryzowane. Grubość dysku galaktycznego wynosi około 500 lat świetlnych w odległości Słońca i osiąga ponad 3 tys. na samych krańcach dysku. Wyznaczenie precyzyjnych odległości do tak licznej próbki cefeid w połączeniu z pomiarami ich prędkości z satelity Gaia umożliwiły również skonstruowanie dokładnej krzywej rotacji Galaktyki – zależności prędkości orbitalnej gwiazd wokół centrum Galaktyki od ich odległości od środka. Nasza krzywa rotacji Galaktyki sięga daleko poza zakres dotychczasowych badań i potwierdza stałą prędkość orbitalną gwiazd, praktycznie aż do granic dysku – dodaje Przemek Mróz. Taki jej kształt jest jednym z podstawowych argumentów na rzecz istnienia tzw. ciemnej materii w Galaktyce. Wiek cefeid skorelowany jest z ich okresem pulsacji. Na tej podstawie można wykonać tomografię wieku cefeid z Galaktyki. Okazuje się, że szereg wyraźnych struktur widocznych na mapie ma podobny wiek. Cefeidy młodsze znajdują się bliżej centrum Galaktyki, a najstarsze na jej krańcach. Zbliżony wiek struktur wskazuje, że musiały one powstać w podobnym momencie w przeszłości, w jednym z ramion spiralnych Galaktyki. Ich dzisiejsze rozmieszczenie w dysku i częściowe rozmycie jest wynikiem różnej prędkości rotacji w Galaktyce ramion spiralnych (gazowych struktur, w których młode gwiazdy, m.in. cefeidy, powstają) oraz rotacji gwiazd – zauważa dr Jan Skowron, współautor pracy w tygodniku Science. Aby przetestować tę hipotezę, skonstruowany został prosty model powstawania poszczególnych struktur. W ramiona spiralne Galaktyki wstawiono epizody formowania się gwiazd w różnych momentach w przeszłości i powstającym gwiazdom przypisano typowe ruchy własne oraz prędkość rotacji. Sprawdzano jak powstające miliony lat temu we fragmentach ramion spiralnych cefeidy będą usytuowane w dzisiejszej Galaktyce. Symulowane i obserwowane struktury w Galaktyce są uderzająco podobne. Możemy więc stwierdzić, że nasz model historii dysku galaktycznego jest możliwy i jest w stanie objaśnić dzisiejsze struktury jakie w nim widzimy – podsumowuje wyniki modelowania dr Jan Skowron.   « powrót do artykułu
  6. Przed miliardem lat w Drodze Mlecznej powstała gromada gwiazd. Od tego czasu gwiazdy te przebyły cztery wielkie okrążenia wokół brzegów naszej galaktyki. Jej grawitacja spowodowała, że gromada rozciągnęła się w długą gwiezdną rzekę. Teraz rzeka ta przepływa w odległości zaledwie 330 lat świetlnych od Ziemi. Zdaniem astronomów, pomoże ona oszacować masę drogi Mlecznej. Astronomowie od dawna obserwowali te gwiazdy otoczone innymi gwiazdami. Dotychczas nie zdawali sobie jednak sprawy, że należą one do jednej grupy. Dopiero dzięki trójwymiarowej mapie tworzonej przez satelitę Gaia zauważono, że gwiazdy poruszają się razem z niemal tą samą prędkością i w tym samym kierunku. Obecnie rzeka ma 1300 lat świetlnych długości i 160 lat świetlnych szerokości. Zidentyfikowanie takiego pobliskiego strumienia jest jak natrafienie na igłę w stogu siana. Astronomowie od dawna patrzyli na ten strumień, spoglądali przez niego, a dopiero teraz dowiedzieliśmy się, że on tam jest, jest kolosalny i znajduje się niezwykle blisko Słońca, mówi João Alves z Uniwersytetu Wiedeńskiego, jeden z autorów badań. Kosmos jest pełen takich strumieni. Jednak ich badanie nastręcza kłopotów. Trudno jest bowiem odróżnić gwiazdy należące do strumienia od innych gwiazd. Zwykle też takie strumienie znajdują się znacznie dalej od nas. Zauważenie takiej struktury tak blisko bardzo nam się przyda. Tak nieduża odległość oznacza, że gwiazdy nie świecą zbyt słabo, a ich obraz nie jest zbyt zamazany, by nie można było ich badać. To marzenie każdego astronoma, dodaje Alves. Specjaliści mają nadzieję, że gdy dokładnie zbadają, w jaki sposób gromada gwiazd zmienia się w strumień, będą mogli określić, w jaki sposób galaktyki zyskują gwiazdy. Nowe znalezisko jest tym cenniejsze, że w tak dużych i masywnych galaktykach jak Droga Mleczna takie gromady są zwykle rozrywane i gwiazdy podążają w różnych kierunkach. Tymczasem znaleziona gwiezdna rzeka jest na tyle wielka i powiązana na tyle mocno, że pozostała nietknięta przez miliard lat, w czasie których okrążała centrum galaktyki. Nie można też wykluczyć, że należy do niej więcej gwiazd, niż wynika to ze wstępnych danych Gai. « powrót do artykułu
  7. Krowa, niezwykle jasne światło na niebie, wciąż dzieli naukowców, którzy nie wiedzą, jaka jest natura tajemniczego zjawiska. Obiekt AT2018cow, nazwany nieoficjalnie Krową (Cow) został po raz pierwszy zaobserwowany 16 czerwca 2018 roku. Pojawił się nagle i znikąd w niewielkiej galaktyce odległej o około 200 milionów lat świetlnych. Krowa jest bardzo jasna, a jej gwałtowne pojawienie się świadczy o tym, że nie jest to supernowa, gdyż te wolniej zyskują na jasności. Początkowo sądzono, że Krowa znajduje się znacznie bliżej, niewykluczone, że w Drodze Mlecznej. Pojawiły się przypuszczenia, że mamy do czynienia z białym karłem, który pochłania materiał pobliskiej gwiazdy i okresowo rozbłyska. Takie wydarzenia są częste w naszej galaktyce. Jednak analiza spektrum światła Krowy wykazała, że znajduje się ona znacznie dalej, w innej galaktyce, i to w odległości, z której rozbłyskujący biały karzeł nie byłby widoczny. Już pierwsze obserwacje pokazały, jak bardzo niezwykły jest to obiekt. Brak mu cech charakterystycznych supernowej. Ponadto zyskiwał na jasności i pozostał bardzo jasnym przez niemal 3 tygodnie. Supernowe zwykle się tak nie zachowują, mówi Daniel Perley, astronom z Liverpool John Moores University. Gdy tylko odkryto, w jakiej odległości leży Krowa, Liliana Rivera Sandoval z Texas Tech University postarała się o dostęp do należącego do NASA Neil Gehrels Swift Observatory, by zobaczyć, jak obiekt wygląda w ultrafiolecie i promieniach rentgenowskich. Okazało się, że emisja w obu zakresach jest bardzo jasna. Ponadto, chociaż jasność promieniowania rentgenowskiego początkowo się zmieniała, to jego spektrum nie ulegało zmianie, nie ewoluowało, co jest czymś niezwykłym, stwierdziła Sandoval. Po 3 tygodniach zakres zmian promieniowania X zwiększył się i spadła też jego jasność. Naukowcy zgadzają się, że długotrwałość tego wydarzenia wskazuje, że po początkowym rozbłysku coś je napędzało. Nie wiadomo jednak co. Niektórzy uważają, że mogła być to niezwykła supernowa, której jądro zapadło się już po eksplozji. Zdaniem innych, byliśmy świadkami rozerwania gwiazdy przez czarną dziurę Jednak takie wydarzenie zwykle wymaga obecności supermasywnej czarnej dziury, takiej, jakie znajdują się w centrach galaktyk, tymczasem Krowa pojawiła się w ramieniu galaktyki spiralnej. Część uczonych stwierdziła więc, że znajduje się tam średnio masywna czarna dziura. Jednak brak jednoznacznych dowodów na istnienie takich dziur. Każda z hipotez ma swoje słabe strony, przyznaje Sandoval. Jakby jeszcze tych tajemnic było mało, warto wspomnieć o obserwacjach przeprowadzonych przez Annę Ho z California Institute of Technology. Pani Ho użyła Submilimeter Array na Mauna Kea. Obiektów eksplodujących zwykle nie obserwuje się w zakresie fal milimetrowych, gdyż fale zanikają krótko po eksplozji i zwykle nie udaj się ich uchwycić. Tym razem było inaczej. Po kilkunastu dniach Krowa nadal jasno świeciła w tym zakresie. Po raz pierwszy udało mi się zaobserwować takie fale z takiego źródła, mówi Ho. Podobnie do innych zakresów, Krowa długo świeciła w spektrum milimetrowym, a później emisja zaczęła zanikać. Ho uważa, że emisja pochodziła z fali uderzeniowej wywołanej przez obiekt eksplodujący w otoczeniu pyłu i gazu. Nagły spadek emisji był spowodowany wyjściem fali poza granicę gazu i pyłu. Naukowcy nie potrafią więc jednoznaczne wyjaśńić, czym była Krowa. Mają więc nadzieję, że trafią na więcej takich zdarzeń, dzięki czemu uda się je zbadać. « powrót do artykułu
  8. W ostatnich latach dzięki teleskopom kosmicznym udało się zidentyfikować nowe obszary powstawania gwiazd, znajdujące się na obrzeżach naszej Galaktyki. Te właśnie miejsca znajdują się w centrum zainteresowania astronomów z Centrum Astronomii UMK w Toruniu. Populacja młodych gwiazd na obrzeżach naszej Galaktyki nie jest jeszcze dobrze poznana - przede wszystkim dlatego, że o ich istnieniu wiemy tak naprawdę od niedawna - opowiada w rozmowie z PAP dr Agata Karska, liderka zespołu, który prowadzi badania w ramach Grupy Astrofizyki Molekularnej działającej przy Centrum Astronomii Uniwersytecie Mikołaja Kopernika w Toruniu. Celem astronomów jest przede wszystkim potwierdzenie, że wspomniane obiekty naprawdę są protogwiazdami - czyli gwiazdami wciąż znajdującymi się w fazie budowy. Będziemy badać, w jaki sposób oddziałują one na otoczenie - i porównywać te wyniki z pobliskimi, znacznie lepiej nam znanymi obszarami - dodaje badaczka. Jak podkreśla, warunki panujące na obrzeżach Galaktyki różnią się od tego, co obserwujemy bliżej centrum, również pod względem chemicznym. Daje nam to szansę lepszego zrozumienia, w jaki sposób powstawały gwiazdy, kiedy Wszechświat był młodszy. Czyli badając obiekty, które nie są tak naprawdę daleko, mamy wgląd w to, w jaki sposób te najdalsze obiekty powstawały - a przynajmniej kierunek, w jakim te zmiany mogły iść - stwierdza dr Karska. Na obrzeżach Galaktyki materia jest znacznie bardziej rozrzedzona, niż w centrum, niższa jest też tam temperatura gazu. Toruńska grupa badawcza chce z kolei sprawdzić m.in., czy to samo dotyczy znajdującego się w tych rejonach pyłu kosmicznego. Okazuje się bowiem, że nie jest to oczywiste. Jak tłumaczy dr Karska, w Wielkim Obłoku Magellana - najbliższej nam galaktyce formującej gwiazdy - temperatura pyłu jest wyższa, niż w analogicznych obszarach w naszej Galaktyce. Przekłada się to na skład chemiczny powłok lodowych na ziarenkach pyłu i na pewno ma również wpływ na chemię ośrodka w fazie gazowej - podkreśla badaczka. Najważniejsza dla grupy dr Karskiej jest jednak kwestia tzw. metaliczności - czyli zawartości pierwiastków cięższych niż wodór i hel w obszarach powstawania gwiazd. Chodzi o to, że metaliczność zwiększa się wraz z ewolucją Wszechświata: ciężkie pierwiastki powstają we wnętrzach gwiazd, więc późniejsze generacje gwiazd korzystają już z tego zasobu ciężkich pierwiastków, które zostały wygenerowane przez ich poprzedniczki. We wczesnym Wszechświecie metaliczność była bardzo niska - niewiele gwiazd osiągnęło bowiem taki etap ewolucji, że było w stanie zasilić ośrodek międzygwiazdowy ciężkimi pierwiastkami. Tych zaczęło przybywać dopiero w miarę starzenia się gwiazd: ciężkie pierwiastki mogą pojawiać się w ośrodku międzygwiazdowym wskutek wybuchu supernowej lub poprzez wiatry gwiazdowe z czerwonych olbrzymów. W zewnętrznych częściach Galaktyki rzeczywiście jest mniej gwiazd, niż w centrum, w związku z czym stopień wzbogacenia ośrodka w metale też jest mniejszy. To właśnie czyni ten region ciekawym obiektem badań - tłumaczy dr Karska. Moment na podjęcie tego rodzaju badań jest szczególnie sprzyjający: nowe generacje teleskopów pozwalają bowiem badać indywidualnie nawet bardzo odległe gwiazdy. Dotychczas przy badaniu odległych obiektów obserwowało się cały wielki obłok molekularny lub jego fragment. Widoczne były wówczas przede wszystkim masywne obiekty i nie można było powiedzieć za wiele o obiektach mniejszych, takich jak protogwiazdy, które później staną się takimi gwiazdami jak nasze Słońce. Co prawda nadal nie możemy badać pojedynczych obiektów w innych galaktykach - ale już obserwacja pojedynczych gwiazd na skraju naszej Galaktyki jest jak najbardziej możliwa - stwierdza astronomka. Dr Karska podkreśla przy tym, że Uniwersytet Mikołaja Kopernika, na którym zdecydowała się prowadzić nowe badania, jest dla nich idealnym miejscem. Astrochemia to taka nietypowa działka astronomii, gdzie kluczowe są nie tylko obserwacje gwiazd, ale też cała znajdująca się tam materia - gaz i pył. W Toruniu fizycy zajmują się w dużej mierze fizyką atomową i molekularną - co oznacza, że mamy na miejscu specjalistów mogących pomóc w interpretacji naszych wyników - mówi badaczka. « powrót do artykułu
  9. Analiza najnowszych danych dostarczyła pierwszych jednoznacznych dowodów, że niedawno doszło do kolizji pomiędzy Małym a Wielkim Obłokiem Magellana. Astronomowie z University of Michigan zauważyli, że południowo-wschodni region Małego Obłoku Magellana, tak zwane Skrzydło, oddala się od głównej części tej galaktyki. To jeden z tych ekscytujących wyników. Widzimy, że Skrzydło stanowi osobny region, oddalający się od reszty Małego Obłoku Magellana, mówi główna autorka badań, profesor Sally Oey. Uczona wraz z zespołem poszukiwała w Małym Obłoku Magellana gwiazd, które są z niego wyrzucane. Wykorzystywali w tym celu dane z teleskopu kosmicznego Gaia, należącego do Europejskiej Agencji Kosmicznej. To urządzenie wyspecjalizowane w wykonywaniu fotografii tych samych gwiazd przez wiele lat, co pozwala na śledzenie i pomiary ich ruchu na nieboskłonie. Przyglądaliśmy się bardzo masywnym, gorącym młodym gwiazdom – najgorętszym i najjaśniejszym, które są dość rzadkie. Piękno Małego i Wielkiego Obłoku Magellana leży w tym, że możemy obserwować wszystkie masywne gwiazdy w pojedynczych galaktykach, dodaje Oey. Badanie gwiazd w pojedynczej galaktyce pozwala astronomom na analizę statystycznie istotnej próbki gwiazd, a po drugie daje im informacje o odległościach pomiędzy poszczególnymi gwiazdami, co pozwala na obliczenie indywidualnych prędkości. Usunęliśmy z danych prędkość samej galaktyki, by zbadać prędkości poszczególnych gwiazd. Byliśmy zainteresowani tymi informacjami, gdyż chcieliśmy zrozumieć procesy fizyczne zachodzące w galaktyce, mówi współpracownik profesor Oye, Dorigo Jones. Analiza wykazała, że wszystkie gwiazdy w Skrzydle, południowo-wschodniej części Małego Obłoku Magellana, poruszają się z podobną prędkością w podobnym kierunku. To dowodzi, że Mały i Wielki Obłok Magellana zderzyły się przed kilkuset milionami lat. W pracach brała też udział Gurtina Besla z University of Arizona. Przed kilku laty wraz ze swoim zespołem przewidziała, że zderzenie pomiędzy obiema galaktykami spowoduje, że Skrzydło zacznie poruszać się w kierunku Wielkiego Obłoku Magellana, jeśli zaś obie galaktyki tylko się miną, to Skrzydło będzie poruszało się równolegle do Małego Obłoku Magellana. Jak poinformowała profesor Oey, Skrzydło porusza się w kierunku Wielkiego Obłoku, co potwierdza, że doszło do zderzenia. « powrót do artykułu
  10. Niewykluczone, że Wielki i Mały Obłok Magellana, dwie galaktyki bliskie Drodze Mlecznej, mają trzeciego towarzysza. Benjamin Armstrong, student z International Centre for Radio Astronomy Research, twierdzi, że 3–5 miliardów lat temu Wielki Obłok Magellana wchłonął inną galaktykę. Jego zdaniem, przyjęcie takiego scenariusza pozwoli wyjaśnić, dlaczego niektóre gwiazdy w Wielkim Obłoku Magellana obiegają centrum galaktyki w kierunku przeciwnym do ruchu wskazówek zegara, podczas gdy większość gwiazd podąża ruchem wskazówek zegara. Przez pewien czas sądzono, że dzieje się tak dlatego, iż są to gwiazdy pochodzące z Małego Obłoku Magellana. My uważamy, że mogą one pochodzić z połączenia się Wielkiego Obłoku z inna galaktyką, mówi Armstrong. Młody uczony wykorzystał symulacje komputerowe, by zbadać prawdziwość swojej hipotezy. Odkryliśmy, że przy połączeniu galaktyk pojawia się silna tendencja do ruchu gwiazd w stronę przeciwną do ruchu wskazówek zegara, informuje uczony. Jego zdaniem, pozwala to też wyjaśnić zagadkę, z którą astronomowie nie mogą sobie poradzić od dekad: dlaczego w Wielkim Obłoku Magellana Większość gwiazd stanowią gwiazdy albo bardzo stare, albo bardzo młode. W galaktykach występują gromady gwiazd. Zawierają one bardzo dużo gwiazd w podobnym wieku. W Drodze Mlecznej mamy same gromady bardzo starych gwiazd. Jednak w Wielkim Obłoku Magellana w gromadach są gwiazdy albo bardzo stare, albo bardzo młode. Nie ma niczego pośredniego, mówi. "Jako, że widzimy, że w Wielkim Obłoku Magellana ponownie doszło do tworzenia gwiazd, może być to dowodem na połączenie galaktyk", dodaje. To wyjaśniałoby również, dlaczego Wielki Obłok Magellana ma gruby dysk. To wstępne ustalenia, ale sugerują one, że tego typu proces może być odpowiedzialny za grubszy dysk galaktyczny. « powrót do artykułu
  11. Dla astrofizyka galaktyki nie są jedynie zbiorami gwiazd. Znacznie bardziej interesujące jest to, czego nie widać. Ciemna materia, która wywiera wpływ grawitacyjny na otoczenie. Jest ona równie ważna dla galaktyk, jak gwiazdy i pył, co więcej, uważa się, że to właśnie dzięki niej powstają i rosną galaktyki. Znalezienie galaktyki bez ciemnej materii byłoby czymś zadziwiającym. Jednak właśnie o takim znalezisku poinformował właśnie na łamach Nature Pieter van Dokkum z Yale University i jego koledzy. Galaktyka NGC 1052-DF2 znajduje się w odległości około 65 milionów lat świetlnych od nas. Jej wielkość jest porównywana z wielkością Drogi Mlecznej, ale zawiera ona 100-krotnie mniej gwiazd. Przez to nie wygląda ona jak typowa galaktyka spiralna, a raczej jak grupa luźno połączonych gwiazd, pyłu i gazu. Gdyby zawierała ona tyle ciemnej materii, co inne galaktyki jej wielkości, jej wpływ grawitacyjny przyspieszałby ruch gromad gwiazd wokół galaktyki. Tymczasem zespół van Dokkuma odkrył, że te gromady poruszają się bardzo leniwie, co oznacza, że NGC 1052-DF2 zawiera bardzo mało ciemnej materii lub nie zawiera jej w ogóle. Nigdy wcześniej nie zaobserwowano takiego zjawiska. Jeśli rzeczywiście w tej galaktyce nie ma ciemnej materii, to rodzi się problem dla wszystkich teorii dotyczących formowania się galaktyk. Nawet jeśli jesteśmy zwolennikami zmodyfikowanej teorii grawitacji, to powinniśmy tam obserwować coś innego, niż w rzeczywistości się dzieje, mówi Erik Verlinde, fizyk teoretyczny z Uniwersytetu w Amsterdamie. W 2015 roku odkryto pierwszą ultra-rozproszoną galaktykę. Uznano, że tego typu formacje będą szczególnie przydatne do badania nad ciemną materią. Van Dokkum i jego koledzy zbudowali w Nowym Meksyku teleskop Dragonfly Telephoto Array, który służy do badania takich galaktyk. Początkowo wykorzystali go do badań nad galaktyką, która wydaje się posiadać niezwykle dużo ciemnej materii. Gdy van Dokkum wraz z zespołem odkryli galaktykę NGC 1052-DF2 spodziewali się tam napotkać podobne zjawisko. Znaleźliśmy zaś coś wręcz przeciwnego. Doszliśmy do wniosku, że tam w ogóle nie ma ciemnej materii. Tego się ani nie spodziewaliśmy, ani nie szukaliśmy. Trzeba jednak podążać za faktami, nawet jeśli są one przeciwieństwem tego, co widziało się wcześniej, mówi van Dokkum. Podczas badań naukowcy wykorzystali Dragonfly, Sloan Digital Skky SUrvey, Hubble'a, Keck Obserwatory i Gemini Obserwatory. Zidentyfikowali 10 gromad kulistych krążących wokół centrum galaktyki. Prędkość takich gromad wskazuje, jak masywna jest galaktyka. Okazało się, że gromady poruszają się znacznie wolniej niż się spodziewano. Gdy dane te skonfrontowano z masą widocznej materii NGC 1052-DF2 stało się jasne, że cały ruch gromad można wyjaśnić oddziaływaniem widocznej materii. Jeśli przyjmiemy, że pomiary zostały wykonane prawidłowo, musimy odwołać się do kilku istniejących teorii opisujących, jak galaktyki mogą powstawać bez udziału ciemnej materii. Wedle jednej z nich galaktyka mogła być do niedawna spokojną chmurą gazu i pojawienie się wokół niej nieodkrytej jeszcze galaktyki zaburzyło tę chmurę, powodując formowanie się gwiazd. Sam van Dokkum spekuluje, że NGC 1052-DF powstała z dwóch strumieni gazu, które się ze sobą zderzyły i uformowały się w nich z rzadka porozrzucane gwiazdy. Istnieją też teorie mówiące, że ciemna materia nie istnieje, a coś innego, jeszcze nieodkrytego, napędza ewolucję gwiazd i wywiera wpływ grawitacyjny na otoczenie. Pojawiła się też teoria mówiaca, że grawitacja to efekt uboczny fluktuacji kwantowych i ciemnej energii. Na razie NGC 1052-DF2 stanowi niezwykłą zagadkę dla astronomów. « powrót do artykułu
×
×
  • Create New...