Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Obserwując skutki wyobrażania sobie ruchu w określonym kierunku, mózg bardzo szybko potęguje siłę sygnału, by zwiększyć przesunięcie kursora. Oznacza to, że interfejsy mózg-komputer naprawdę mają przyszłość, a wbrew sceptycznemu nastawieniu niektórych naukowców, proces uczenia powinien przebiegać szybciej, niż ktokolwiek się spodziewał.

Eksperci z University of Washington współpracowali z ośmioma pacjentami ze szpitali w Seattle, którzy chorowali na padaczkę i czekali na operację. Do powierzchni ich mózgów przyczepiono rejestrujące siłę sygnału elektrody. Proszenie ludzi, by wyobrazili sobie wykonywanie jakiegoś ruchu, np. przemieszczania ramienia, to powszechna praktyka, w wyniku której ma powstać sygnał pozwalający kontrolować jakieś urządzenie, np. komputer bądź protezę. Dotąd proces ten był słabo poznany. Przeprowadzono wiele badań na nieczłekokształtnych naczelnych. Ale jak poprosić zwierzę o wyobrażenie robienia czegoś? Nawet nie wiemy, czy to potrafią – tłumaczy doktorant Kai Miller. Dlatego postanowiono przeprowadzić podobny eksperyment z ludźmi. Na początku zmierzono natężenie sygnału, gdy ochotnicy ściskali i rozluźniali pięść, wystawiali język, wzruszali ramionami lub wymawiali słowo "ruch". Potem Amerykanie prosili o wyobrażenie sobie wykonywania tych samych czynności i ponownie przeprowadzali pomiar. Jak oczekiwano na podstawie wcześniejszych studiów, sygnał był podobny jak przy rzeczywistych działaniach, ale o wiele słabszy. Ostatecznie naukowcy obserwowali aktywność mózgu, gdy chorzy wyobrażali sobie dany ruch, a sygnał wykorzystywano do przesunięcia kursora w stronę celu widocznego na ekranie komputera. Po mniej niż 10 min treningu sygnały związane z wyobrażonym ruchem stały się znacznie silniejsze niż służące do wykonania fizycznego ruchu w rzeczywistym świecie. Szybki wzrost aktywności [...] potwierdza tezę o niesamowitej plastyczności mózgu podczas uczenia się kontroli niebiologicznych urządzeń – podkreśla prof. Rajesh Rao. Nie minęło 10 min, kiedy dwóch ochotników donosiło, że nie muszą już myśleć o ruchach części ciała, by przemieścić kursor.

Zdolność badanych do zmiany sygnału pod wpływem sprzężenia zwrotnego była o wiele większa, niż się spodziewaliśmy – cieszy się kolejny współautor studium neurochirurg dr Jeffrey Ojemann. Badacze z University of Washington porównują to, co zaszło w mózgu, to rozrostu mięśni kulturysty pod wpływem podnoszenia ciężarów. Posłużenie się interfejsem doprowadziło do pojawienia się w mózgu populacji superaktywnych neuronów. Odkrycie to daje nadzieję na opracowanie skuteczniejszych metod rehabilitacji pacjentów po udarach.

Amerykanom udało się też najprawdopodobniej stwierdzić, które sygnały mózg wychwytuje. Porównali wzorce sygnałów o niskiej częstotliwości, które są wykorzystywane do kontroli zewnętrznych urządzeń, i o wysokiej częstotliwości, które uznaje się przeważnie za szum. Odkryli, że dla każdego typu ruchu najbardziej specyficzne były właśnie te ostatnie. Ponieważ każdy obejmuje niewielką część mózgu, można jednocześnie wychwytywać kilka sygnałów o wysokiej częstotliwości, aby kontrolować bardziej złożone urządzenia.

Share this post


Link to post
Share on other sites

zupełnie się na tym nie znam,ale małym rozumkiem rozumuję że jak istnieją różne zjawiska związane z fantomowymi kończynami i łatwym przystosowywaniem się mózgu do drastycznych zmian ciała a nawet do zmian samego mózgu, to chyba przez analogię oczywistym wydaje się łatwa możliwość komunikacji z  komputerami

Share this post


Link to post
Share on other sites

Pewnie masz trochę racji, ale zwróć uwagę, że ból jest wrażeniem bardzo prymitywnym, a zmuszanie kursora do ruchu chyba jest jednak bardziej złożone. Poza tym ból fantomowy ma swoje fizjologiczne podstawy (nagły zanik sygnałów z nerwów, które "nadawały" przez całe lata i sprzężenie zwrotne albo też drażnienie pozostałych zakończeń nerwowych), a poza tym odpowiedzialne zań impulsy biegną do mózgu, a komendy odpowiedzialne za poruszanie kursora wędrują w przeciwnym kierunku, więc wyciąganie wniosków, że jak jedno działa to drugie też musi, to trochę droga na skróty. Wiem, że nigdzie nie napisałeś, że jest inaczej, ale chciałem o tym wspomnieć, bo opisywana tutaj interakcja z interfejsem to jednak trochę inna bajka niż ból po utracie kończyny.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Francuscy lekarze ze zdumieniem dowiedzieli się, że 44-letni normalnie funkcjonujący mężczyzna niemal nie ma... mózgu. Obrazowanie medyczne wykazało, że czaszkę prawie całkowicie wypełniał płyn mózgowo-rdzeniowy.
      W czaszce zdrowego człowieka znajdują się cztery niewielkie komory, wypełnione płynem. U Francuza były one tak powiększone, że prawie nie było miejsca na mózg. Została mu tylko cienka warstwa komórek mózgowych.
      Ma żonę, czworo dzieci i pracuje jako urzędnik państwowy – napisali lekarze w piśmie do specjalistycznego pisma medycznego „Lancet”.
      Mężczyzna trafił do szpitala, gdyż skarżył się na bóle nogi. Lekarze, którzy czytali jego kartę choroby, dowiedzieli się, że jako dziecko miał on założony dren, który odprowadzał z czaszki nadmiar płynu i dren ten został usunięty gdy mężczyzna miał 14 lat.
      Lekarze najpierw przeprowadzili tomografię komputerową, a następnie rezonans magnetyczny. Byli zdumieni tym, co zobaczyli. Najbardziej zdumiewa mnie to, jak tak niewielki mózg poradził sobie z czynnościami życiowymi. On nie powinien żyć – mówi doktor Max Muenke, specjalista ds. uszkodzeń mózgu w Narodowym Instytucie Badań Ludzkiego Genomu.
      U mężczyzny przeprowadzono testy na inteligencję, które wykazały IQ na poziomie 75 punktów. To mniej niż średnie 100 punktów, jednak nie można mężczyzny uznać za upośledzonego.
      Jeśli jakiś proces zachodzi bardzo powoli, prawdopodobnie przez dziesięciolecia, różne części mózgu moją przejąć rolę tych obszarów, które zostały zredukowane – mowi Muenke.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ssaki o dużych mózgach zwykle występują z mniejszej liczbie w danej lokalizacji niż ssaki o mniejszych mózgach, wynika z najnowszych badań. Naukowcy z University of Reading stali na czele międzynarodowej grupy, której celem było zbadanie, dlaczego lokalne populacje takich ssaków jak myszy, małpy, kangury i lisy tak bardzo różnią się liczebnością na lokalny obszarach, nawet jeśli mamy do czynienia z podobnymi gatunkami.
      Uczeni wykorzystali metody statystyczne do przebadania różnych scenariuszy dla setek gatunków i stwierdzili, że ogólny trend dla ssaków jest taki, że im gatunek ma większy mózg, w tym mniejszym zagęszczeniu występuje. Gdy np. rozważamy dwa gatunku i podobnej diecie i masie ciała, okazuje się, że to wielkość mózgu jest wskazówką co do zagęszczenia zwierząt na danym obszarze.
      Większe mózgi kojarzą się z większą inteligencją. W tym przypadku to większe mózgi powstrzymują zwierzęta przed życiem w zbyt dużym zagęszczeniu. Może mieć to związek z faktem, że większy mózg wymaga więcej żywności i innych zasobów, a zatem potrzebuje więcej przestrzeni, by zaspokoić te potrzeby, mówi doktor Manuela Gonzalez-Suarez, która stała na czele grupy badawczej.
      Zrozumienie, dlaczego na różnych obszarach występuje różne zagęszczenie zwierząt jest istotne z punktu widzenia ich ochrony. Mniejsze zagęszczenie powoduje, że gatunek bardziej jest narażony na wymarcie, z drugiej strony większe lokalne zagęszczenie zwiększa ekspozycję gatunku na takie zagrożenia, jak istnienie dróg, dodaje.
      Bardzo interesująco wypada porównanie zagęszczenia, masy ciała i masy mózgu. Otóż przeciętna mysz waży 0,016 kilograma, jej mózg ma wagę 0,0045 kg, a gatunek żyje w niezwykle dużym zagęszczeniu wynoszącym 600 osobników na km2. W dużym zagęszczeniu 86 osobników na km2 żyją też wiewiórki. To zwierzęta warzące 0,325 kg, których masa mózgu wynosi 0,006 kg.
      Powszechnie występującym zwierzęciem jest też lis rudy (2,6 osobnika na km2), ssak ważący 4,3 kg o masie mózgu 0,047 kg. Z kolei makak berberyjski (11 kg masy ciała, 0,095 kg masy mózgu) występuje w liczbie 36 osobników na km2. Natomiast tygrys, który waży 185 kg i ma mózg o masie 0,276 kg występuje w liczbie 0,14 osobnika na km2. Podobnie zresztą 4-tonowy słoń z mózgiem o masie 4,5 kg, którego liczebność na obszarach występowania to 0,58 osobnika na km2.
      Ze schematu tego wyraźnie wyłamuje się człowiek. Lokalne zagęszczenie naszego gatunku bardzo się różni, dochodząc do 26 000 osobników na km2 w Monako.
      Wielkość mózgu nie jest jedynym czynnikiem decydującym o zagęszczeniu ssaków. Różne środowiska mają różne stabilność oraz różne gatunki konkurujące, więc to również ma wpływ. Konieczne są dalsze badania nad wpływem rozmiarów mózgów w różnych środowiskach, stwierdzają autorzy badań.
      Naukowcy zauważają też, że istnieją wyraźne wyjątki od reguły. Na przykład ludzie wykorzystali inteligencję do pokonania problemu ograniczonej ilości zasobów na danym terenie. Możemy importować żywność z całego świata co teoretycznie pozwala nam żyć w wielkiej liczbie w dowolnym miejscu na Ziemi. Niektóre inteligentne gatunki również mogły częściowo poradzić sobie z tymi ograniczeniami, stwierdzają badacze.
      Na potrzeby badań naukowcy wzięli pod lupę 656 nielatających ssaków lądowych. Związek wielkości mózgu z zagęszczeniem populacji jest szczególnie widoczny wśród ssaków mięsożernych oraz naczelnych, a mniej widoczny wśród gryzoni i torbaczy.
      Przykładem takich oczywistych zależności może być porównanie makaków berberyjskich z siamangiem wielkim. Oba gatunki małp mają podobną dietę i podobną masę ciała. Jednak mózg makaka waży 95 gramów, a zwierzę występuje w zagęszczeniu 36 osobników na km2. Z kolei mózg siamanga waży 123 gramy, a zagęszczenie populacji wynosi 14 osobników na km2.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Polska firma Contur 2000 zajęła trzecie miejsce w kategorii bionicznych protez nóg na międzynarodowych zawodach CYBATHLON. W tej organizowanej co cztery lata imprezie osoby niepełnosprawne konkurują w różnych dyscyplinach, wspierane przez rozmaite nowoczesne urządzenia.
      CYBATHLON to międzynarodowe zawody, które mają wyłonić najlepsze mechatroniczne urządzenia wspierające osoby z niepełnosprawnościami. Można więc na nich zobaczyć wózki inwalidzkie, egzoszkielety czy mechaniczno-elektroniczne protezy. W szranki stają zespoły z całego świata, mierząc się z różnorodnymi zadaniami, takimi jak wejście po schodach w egzoszkielecie.
      W tym roku zawody miały wyjątkowy format ze względu na pandemię – zespoły nie mogły przylecieć do Zurychu żeby tam rywalizować, tak jak cztery lata temu. Dlatego każdy zespół nagrał swój wyścig, a w dniu wydarzenia nagranie zostało pokazane razem z komentarzem na żywo.
      W zakończonej właśnie edycji polska firma Contur 2000 zajęła trzecie miejsce w kategorii protez nóg, startując z protezą podudzia HybridLeg, która pozwala na praktycznie swobodne chodzenie.
      Proteza pracuje przy tym w dwóch trybach - pasywnym i aktywnym. W pierwszym z nich nie wymaga dostarczania energii. Natomiast w trybie aktywnym bateria zasila elektryczny silnik wspomagający chód. Dzięki temu możliwe jest wchodzenie po schodach czy łatwiejsze poruszanie się po powierzchni nachylonej.
      Takie połączenie pasywnej i aktywnej protezy w jednym urządzeniu było możliwe dzięki innowacyjnemu, zgłoszonemu już do urzędu patentowego układowi przekładni i sprzęgła.
      Polską firmę wyprzedziły dwa zespoły ze Szwajcarii.
      W czasie zawodów, wyposażony w protezę zawodnik musiał na przykład podejść do stolika, zdjąć z niego dwa spodki z filiżankami, przenieść na inne miejsce, stamtąd wziąć dwa talerzyki i położyć w miejscu, gdzie wcześniej stały filiżanki.
      Na innym etapie miał za zadanie podnieść z podłogi talerzyki z jabłkami i przenieść je przez ułożony z desek tor przeszkód. Musiał też np. chodzić po wąskiej kładce z obciążeniem czy pokonywać schody.
      Udział w zawodach był dla nas wielką przygodą i jednocześnie wielkim sukcesem. Jesteśmy dumni, że mogliśmy reprezentować Polskę w międzynarodowych zawodach Cybathlon 2020 Global Edition, zajmując zaszczytne trzecie miejsce. Serdecznie dziękujemy Adrianowi za jego zaangażowanie, hart ducha i jeszcze raz gratulujemy osiągniętego wyniku – mówią twórcy HybridLeg.
      Adrian to śmiałek, który z bioniczną nogą brawurowo, ale pewnie pokonywał kolejne przeszkody.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas gdy dorośli przetwarzają różne zadania w wyspecjalizowanych obszarach mózgu w jednej z półkul, niemowlęta i dzieci używają do tego celu obu półkul. To może być przyczyną, dla której dzieci znacznie łatwiej regenerują się po urazach mózgu niż dorośli. Autorzy najnowszych badań skupili się na języku i odkryli, że dzieci podczas przetwarzania języka mówionego używają obu półkul mózgu.
      To bardzo dobra wiadomość dla dzieci, które odniosły urazy mózgu. Użycie obu półkul zapewnia mechanizm kompensujący po urazie. Na przykład, jeśli w wyniku udaru zaraz po urodzeniu dojdzie do uszkodzenia lewej półkuli mózgu, dziecko nauczy się języka korzystając z prawej półkuli. Dziecko z mózgowym porażeniem dziecięcym, które uszkodzi tylko jedną półkulę, może rozwinąć wszystkie potrzebne zdolności poznawcze w drugiej półkuli. Nasze badania pokazują, jak to jest możliwe, mówi profesor Elissa L. Newport, dyrektor Center for Brain Plasticity and Recovery, które jest wspólnym przedsięwzięciem Georgetown University i MedStar National Rehabilitation Network.
      Niemal wszyscy dorośli przetwarzają mowę tylko w lewej półkuli. Potwierdzają to zarówno badania obrazowe jak i fakt, że po udarze, który dotknął lewą półkulę, ludzie często tracą zdolność do przetwarzania mowy.
      Jednak u bardzo małych dzieci uraz jednej tylko półkuli rzadko prowadzi do utraty zdolności językowych. Nawet, jeśli dochodzi do poważnego zniszczenia lewej półkuli, dzieci nadal potrafią korzystać z języka. To zaś sugeruje – jak zauważa Newport – że dzieci przetwarzają język w obu półkulach. Jednak tradycyjne metody obrazowania nie pozwalały na obserwowanie tego zjawiska. Nie było jasne, czy dominacja lewej półkuli w zakresie zdolności językowych jest widoczna już od urodzenia, czy rozwija się z wiekiem, stwierdza uczona.
      Teraz, dzięki funkcjonalnemu rezonansowi magnetycznemu udało się wykazać, że u małych dzieci żadna z półkul nie ma w tym zakresie przewagi. Lateralizacja pojawia się z wiekiem. Ustala się ona w wieku 10-11 lat.
      W najnowszych badaniach udział wzięło 39 zdrowych dzieci w wieku 4–13 lat, których wyniki porównano z 14 dorosłymi w wieku 18–29 lat. Obie grupy zmierzyły się z zadaniem polegającym na rozumieniu zdań. W czasie rozwiązywania zadania każdy z uczestników poddany był skanowaniu za pomocą fMRI, a wyniki potraktowano indywidualnie. Później stworzono mapę aktywności mózgu dla grup wiekowych 4–6 lat, 7–9 lat, 10–13 lat i 18–29 lat.
      Badacze stwierdzili, że wyniki uśrednione dla każdej z grup pokazują, iż nawet u małych dzieci występuje preferencja (lateralizacja) lewej półkuli mózgu w czasie przetwarzania mowy. Jednak znaczny odsetek najmłodszych dzieci wykazuje silną aktywację prawej półkuli mózgu. U osób dorosłych prawa półkula aktywuje się podczas rozpoznawania ładunku emocjonalnego niesionego z głosem. Natomiast u dzieci bierze ona udział i w rozpoznawaniu mowy i w rozpoznawaniu ładunku emocjonalnego.
      Naukowcy sądzą, że jeśli udałoby im się przeprowadzić podobne badania u jeszcze młodszych dzieci, to obserwowaliby jeszcze większe zaangażowanie prawej półkuli mózgu w przetwarzanie języka.
      Obecnie Newport i jej grupa skupiają się na badaniach przetwarzania mowy w prawej półkuli mózgu u nastolatków i młodych dorosłych, u których lewa półkula mózgu została poważnie uszkodzona podczas udaru zaraz po urodzeniu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Okazuje się, że na utratę wagi w wyniku zmiany stylu życia na zdrowszy oraz na rozkład tłuszczu w organizmie wpływa wrażliwość mózgu na insulinę. Długoterminowe badania prowadzone  Niemieckie Centrum Badań nad Cukrzycą, Centrum Helmholza w Monachium oraz Szpital Uniwersytecki w Tybindze wykazały, że jeśli nasz mózg jest wrażliwy na obecność insuliny, możemy bardziej stracić na wadze, pozbyć się niezdrowego tłuszczu brzusznego i łatwiej utrzymać niską wagę przez lata. Jeśli jednak nasz mózg słabo reaguje na insulinę, to początkowo stracimy mniej kilogramów, z czasem ponownie przybierzemy na wadze, a na brzuchu zgromadzimy więcej tkanki tłuszczowej.
      Osoby o mózgach bardziej wrażliwych na insulinę zyskiwały na stosowaniu diety i ćwiczeń. Znacznie traciły na wadze i pozbywały się tkanki tłuszczowej z brzucha. Nawet gdy przestawały ćwiczyć i stosować dietę, to w czasie kolejnych dziewięciu lat gdy je obserwowaliśmy, przybierały niewiele tłuszczu, mówi doktor Martin Heni ze Szpitala Uniwersyteckiego w Tybindze, który stał na czele grupy badawczej.
      Z kolei u osób o mózgu mało wrażliwym lub niewrażliwym na insulinę zanotowano niewielką utratę wagi w ciągu 9 miesięcy od zmiany stylu życia na zdrowszy.
      Uczestnicy badań na 24 miesiące zmienili styl życia na taki, który sprzyjał zmniejszeniu wagi. Po 9 miesiącach przeciętna osoba, której mózg był wrażliwy na insulinę, straciła na wadze około 4,5 kilogramów, a osoba o niewrażliwym mózgu – około 0,5 kg. W kolejnych miesiącach osoby z mózgami wrażliwymi nadal traciły na wadze i po 24 miesiącach średnia utrata wagi wynosiła u nich niemal 6 kg. Przez kolejnych 76 miesięcy osoby te nie stosowały już nowego stylu życia, a mimo to przybrały na wadze jedynie około 0,5 kg.
      Zupełnie inaczej wyglądała sytuacja w przypadku osób o mózgach mało wrażliwych lub niewrażliwych na insulinę. Na wadze traciły jedynie przez 9 miesięcy. Następnie do 24. miesiąca stosowania zdrowszego trybu życia ich waga rosła i po 24 miesiącach była o około 1 kg wyższa niż przed rozpoczęciem badań. Utrzymywała się na wyższym poziomie przez kolejnych 76 miesięcy.
      Podobnie rzecz się miała z tłuszczem brzusznym. Osoby o bardziej wrażliwych mózgach traciły go więcej w wyniku ćwiczeń i diety bogatej w włókna roślinne, a po przerwaniu zdrowego trybu życia wolniej ponownie go zyskiwały. Tkanka tłuszczowa na brzuchu jest bardzo niekorzystna, gdyż jej obecność jest silnie powiązana z cukrzycą, ryzykiem chorób układu krążenia i nowotworów.
      Jak zauważyli autorzy w podsumowaniu swoich badań spostrzeżenia te wykraczają poza zakres chorób metabolicznych i wskazują na konieczność opracowania strategii radzenia sobie z opornością ludzkiego mózgu na insulinę.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...